Symmetry of the Dirac equation with an external non-Abelian gauge field
| Parent link: | Soviet Physics Journal: Scientific Journal Vol. 29, iss. 3.— 1986.— [P. 235-242] |
|---|---|
| Glavni avtor: | Bagrov V. G. |
| Drugi avtorji: | Shapovalov A. V. Aleksandr Vasilyevich |
| Izvleček: | Title screen Режим доступа: по договору с организацией-держателем ресурса |
| Jezik: | angleščina |
| Izdano: |
1986
|
| Teme: | |
| Online dostop: | http://link.springer.com/article/10.1007%2FBF00891885 |
| Format: | Elektronski Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636653 |
Podobne knjige/članki
Separation of variables in the Dirac equation in Stackel spaces. II. External gauge fields
od: Bagrov V. G.
Izdano: (1991)
od: Bagrov V. G.
Izdano: (1991)
Yang-Mills fields permitted by abelian complete sets of first-order symmetry operators of the Dirac equation
od: Bagrov V. G.
Izdano: (1989)
od: Bagrov V. G.
Izdano: (1989)
The Dirac equation in an external electromagnetic field: symmetry algebra and exact integration
od: Breev A. I. Aleksandr Igorevich
Izdano: (2016)
od: Breev A. I. Aleksandr Igorevich
Izdano: (2016)
Classification of the Dirac equation with an external SU(3) gauge field admitting a first-order symmetry operator of special type
od: Evseevich A. A.
Izdano: (1989)
od: Evseevich A. A.
Izdano: (1989)
Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field
od: Shapovalov A. V. Aleksandr Vasilyevich
Izdano: (2018)
od: Shapovalov A. V. Aleksandr Vasilyevich
Izdano: (2018)
Separation of variables in the Dirac equation in Stackel spaces
od: Bagrov V. G.
Izdano: (1990)
od: Bagrov V. G.
Izdano: (1990)
Noncommutative Integration and Symmetry Algebra of the Dirac Equation on the Lie Groups
od: Breev A. I. Aleksandr Igorevich
Izdano: (2016)
od: Breev A. I. Aleksandr Igorevich
Izdano: (2016)
Methods of generating integrable potentials for the Sochrodinger equation and nonlocal symmetries
od: Bagrov V. G.
Izdano: (1991)
od: Bagrov V. G.
Izdano: (1991)
Semiclassically Concentrates Waves for the Nonlinear Schrodinger Equation with External Field
od: Shapovalov A. V. Aleksandr Vasilyevich
Izdano: (2002)
od: Shapovalov A. V. Aleksandr Vasilyevich
Izdano: (2002)
New exact solutions of the Dirac equation
Izdano: (1980)
Izdano: (1980)
Nontopological soliton configuration in the system of two interacting scalar fields with the global Abelian symmetry
od: Loginov A. Y.
Izdano: (2009)
od: Loginov A. Y.
Izdano: (2009)
Symmetry algebras of linear differential equations
od: Shapovalov A. V. Aleksandr Vasilyevich
Izdano: (1992)
od: Shapovalov A. V. Aleksandr Vasilyevich
Izdano: (1992)
One-loop divergences in the 6D , N=(1,0) abelian gauge theory
Izdano: (2016)
Izdano: (2016)
New exact solutions of the Dirac equation. I
Izdano: (1973)
Izdano: (1973)
New exact solutions of the Dirac equation. V
Izdano: (1975)
Izdano: (1975)
New exact solutions of the Dirac equations. VI
Izdano: (1977)
Izdano: (1977)
New exact solutions of the Dirac equation. VII
Izdano: (1977)
Izdano: (1977)
New exact solutions of the Dirac equation. IV
Izdano: (1975)
Izdano: (1975)
New exact solutions of the Dirac equation. IX
Izdano: (1978)
Izdano: (1978)
Spontaneous violation of symmetry of the classical Liouville equation
od: Lasukov V. V. Vladimir Vasilievich
Izdano: (2007)
od: Lasukov V. V. Vladimir Vasilievich
Izdano: (2007)
New exact solutions to Dirac's equation. 3
Izdano: (1975)
Izdano: (1975)
New exact solutions to Dirac's equation. I
Izdano: (1975)
Izdano: (1975)
Some problems of symmetry of the Schrodinger equations
Izdano: (1991)
Izdano: (1991)
Gravitation field in the Vaidya problem allowing separation of variables in the Hamilton-Jacobi equation
od: Bagrov V. G.
Izdano: (1986)
od: Bagrov V. G.
Izdano: (1986)
SU(1, 1|N) superconformal mechanics with fermionic gauge symmetry
od: Chernyavsky D. V. Dmitry Viktorovich
Izdano: (2018)
od: Chernyavsky D. V. Dmitry Viktorovich
Izdano: (2018)
Asymptotics of physical solutions to the Lorentz-Dirac equation for planar motion in constant electromagnetic fields
od: Kazinski P. O.
Izdano: (2011)
od: Kazinski P. O.
Izdano: (2011)
Gauge dependence of the one-loop divergences in 6D, N=(1,0) abelian theory
Izdano: (2018)
Izdano: (2018)
Stueckel spaces of the electrovacuum with a two-parameter Abelian group of motions. Set of the type (2.0)
od: Bagrov V. G.
Izdano: (1983)
od: Bagrov V. G.
Izdano: (1983)
Gauge-Invariant Lagrangian Formulations for Mixed-Symmetry Higher-Spin Bosonic Fields in AdS Spaces
od: Reshetnyak А. А. Aleksandr Aleksandrovich
Izdano: (2023)
od: Reshetnyak А. А. Aleksandr Aleksandrovich
Izdano: (2023)
Noncommutative integration of the Dirac equation in Riemann spaces possessing a group of automorphisms
od: Fedoseev V. G.
Izdano: (1991)
od: Fedoseev V. G.
Izdano: (1991)
New exact solutions to Dirac's equation. Part 8
Izdano: (1978)
Izdano: (1978)
Stueckel spaces of the electrovacuum with two-parameter Abelian group of motions. Formulation of the problem and sets of the type (2.1)
od: Bagrov V. G.
Izdano: (1983)
od: Bagrov V. G.
Izdano: (1983)
Separation of variables in the wave equation. Sets of the type (1.1) and Schrodinger equation
od: Bagrov V. G.
Izdano: (1991)
od: Bagrov V. G.
Izdano: (1991)
Rigid particle revisited: Extrinsic curvature yields the Dirac equation
od: Deriglazov A. A. Alexei Anatolievich
Izdano: (2014)
od: Deriglazov A. A. Alexei Anatolievich
Izdano: (2014)
Free Schrodinger equation analyzed in terms of the wave equation
od: Bagrov V. G. Vladislav Gavriilovich
Izdano: (1990)
od: Bagrov V. G. Vladislav Gavriilovich
Izdano: (1990)
Equation of solvated ion oscillations in solution under an external periodic electric field
Izdano: (2017)
Izdano: (2017)
Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
od: Lisok A. L. Aleksandr Leonidovich
Izdano: (2013)
od: Lisok A. L. Aleksandr Leonidovich
Izdano: (2013)
Local symmetry algebra of the schrodinger equation for the hydrogen atom
od: Drokin A. A.
Izdano: (1996)
od: Drokin A. A.
Izdano: (1996)
Non-vortex topologigal solitons of the CP(1) gauge model
od: Afanasjev K. V. Konstantin Vadimovich
Izdano: (2016)
od: Afanasjev K. V. Konstantin Vadimovich
Izdano: (2016)
A semiclassical approximation for the nonstationary two-dimensional nonlinear Schrodinger equation with an external field in polar coordinates
od: Borisov A. V. Aleksey Vladimirovich
Izdano: (2006)
od: Borisov A. V. Aleksey Vladimirovich
Izdano: (2006)
Podobne knjige/članki
-
Separation of variables in the Dirac equation in Stackel spaces. II. External gauge fields
od: Bagrov V. G.
Izdano: (1991) -
Yang-Mills fields permitted by abelian complete sets of first-order symmetry operators of the Dirac equation
od: Bagrov V. G.
Izdano: (1989) -
The Dirac equation in an external electromagnetic field: symmetry algebra and exact integration
od: Breev A. I. Aleksandr Igorevich
Izdano: (2016) -
Classification of the Dirac equation with an external SU(3) gauge field admitting a first-order symmetry operator of special type
od: Evseevich A. A.
Izdano: (1989) -
Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field
od: Shapovalov A. V. Aleksandr Vasilyevich
Izdano: (2018)