Separation of variables in the Dirac equation in Stackel spaces

書誌詳細
Parent link:Classical and Quantum Gravity: Scientific Journal
Vol. 7, iss. 4.— 1990.— [P. 517-531]
第一著者: Bagrov V. G.
その他の著者: Shapovalov A. V. Aleksandr Vasilyevich, Yevseyevich A. A.
要約:Title screen
The subspaces of Riemannian space of signature (+---) that admit separation of the Dirac equation have been found in the case of Riemannian space admitting the separation of the Hamilton-Jacobi equation. For the separation of variables in the Hamilton-Jacobi equation it is necessary for the complete set of Killing vectors and tensors to be of a special kind. Every complete set defines its own type of metric of Riemannian space which is called Stackel space. The Dirac equation does not permit the separation of variables in general cases of Stackel space. The main idea of the paper is in the construction, in Stackel space, of a complete set of another kind. This complete set consists of three matrix first-order differential symmetry operators of the Dirac equation. The operators are pairwise commuting and linearly independent. The complete set structure is in agreement with the structure of the Killing vectors and tensors of Stackel space. The separation of variables in the Dirac equation has been carried out in the explicit form in Stackel spaces which admit complete sets of symmetry operators. These operators have been used essentially in the process of separation that differs from Chandrasekhar method
Режим доступа: по договору с организацией-держателем ресурса
言語:英語
出版事項: 1990
主題:
オンライン・アクセス:http://iopscience.iop.org/0264-9381/7/4/004/
フォーマット: 電子媒体 図書の章
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636644

MARC

LEADER 00000nla0a2200000 4500
001 636644
005 20250401105550.0
035 |a (RuTPU)RU\TPU\network\684 
090 |a 636644 
100 |a 20140224d1990 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Separation of variables in the Dirac equation in Stackel spaces  |f V. G. Bagrov, A. V. Shapovalov, A. A. Yevseyevich 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 530-531 (23 tit.)] 
330 |a The subspaces of Riemannian space of signature (+---) that admit separation of the Dirac equation have been found in the case of Riemannian space admitting the separation of the Hamilton-Jacobi equation. For the separation of variables in the Hamilton-Jacobi equation it is necessary for the complete set of Killing vectors and tensors to be of a special kind. Every complete set defines its own type of metric of Riemannian space which is called Stackel space. The Dirac equation does not permit the separation of variables in general cases of Stackel space. The main idea of the paper is in the construction, in Stackel space, of a complete set of another kind. This complete set consists of three matrix first-order differential symmetry operators of the Dirac equation. The operators are pairwise commuting and linearly independent. The complete set structure is in agreement with the structure of the Killing vectors and tensors of Stackel space. The separation of variables in the Dirac equation has been carried out in the explicit form in Stackel spaces which admit complete sets of symmetry operators. These operators have been used essentially in the process of separation that differs from Chandrasekhar method 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Classical and Quantum Gravity  |o Scientific Journal 
463 |t Vol. 7, iss. 4  |v [P. 517-531]  |d 1990 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Bagrov  |b V. G. 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
701 1 |a Yevseyevich  |b A. A. 
801 2 |a RU  |b 63413507  |c 20180306  |g RCR 
856 4 |u http://iopscience.iop.org/0264-9381/7/4/004/ 
942 |c CF