Enveloping algebra identities on solutions of conformally invariant wave equations
| Parent link: | Soviet Physics Journal: Scientific Journal Vol. 34, iss. 9.— 1991.— [P. 751-755] |
|---|---|
| Main Author: | |
| Other Authors: | , |
| Summary: | Title screen We study identities in the enveloping algebra of the conformal group, which is the symmetry group of many wave equations: d'Alambert, Weyl, Maxwell, etc. We find all second-order identities for these equations and, in addition, the dimension of the space of nontrivial symmetry operators of any order for the d'Alambert equation Режим доступа: по договору с организацией-держателем ресурса |
| Language: | English |
| Published: |
1991
|
| Subjects: | |
| Online Access: | http://link.springer.com/article/10.1007%2FBF00896704 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636631 |
| Summary: | Title screen We study identities in the enveloping algebra of the conformal group, which is the symmetry group of many wave equations: d'Alambert, Weyl, Maxwell, etc. We find all second-order identities for these equations and, in addition, the dimension of the space of nontrivial symmetry operators of any order for the d'Alambert equation Режим доступа: по договору с организацией-держателем ресурса |
|---|