Separation of variables in the wave equation. Sets of the type (1.1) and the algebra SU(1.2)

Podrobná bibliografie
Parent link:Soviet Physics Journal: Scientific Journal
Vol. 34, iss. 2.— 1991.— [P. 168-171]
Hlavní autor: Bagrov V. G.
Další autoři: Samsonov B. F., Shapovalov A. V. Aleksandr Vasilyevich
Shrnutí:Title screen
It is shown that for the wave equation in Minkowski space all complete sets of symmetry operators that contain one istropic operator reduce to sets in which the isotropic operator has the form δ/δx0+δ/δx3
Режим доступа: по договору с организацией-держателем ресурса
Jazyk:angličtina
Vydáno: 1991
Témata:
On-line přístup:http://link.springer.com/article/10.1007%2FBF00940962
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636624

MARC

LEADER 00000nla0a2200000 4500
001 636624
005 20250401093509.0
035 |a (RuTPU)RU\TPU\network\654 
035 |a RU\TPU\network\653 
090 |a 636624 
100 |a 20140220d1991 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Separation of variables in the wave equation. Sets of the type (1.1) and the algebra SU(1.2)  |f V. G. Bagrov, B. F. Samsonov, A. V. Shapovalov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 171 (8 tit.)] 
330 |a It is shown that for the wave equation in Minkowski space all complete sets of symmetry operators that contain one istropic operator reduce to sets in which the isotropic operator has the form δ/δx0+δ/δx3 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Soviet Physics Journal  |o Scientific Journal 
463 |t Vol. 34, iss. 2  |v [P. 168-171]  |d 1991 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Bagrov  |b V. G. 
701 1 |a Samsonov  |b B. F. 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
801 2 |a RU  |b 63413507  |c 20180306  |g RCR 
856 4 |u http://link.springer.com/article/10.1007%2FBF00940962 
942 |c CF