Symmetry algebras of linear differential equations

Bibliographic Details
Parent link:Theoretical and Mathematical Physics: Scientific Journal
Vol. 92, iss. 1.— 1992.— [P. 697-703]
Main Author: Shapovalov A. V. Aleksandr Vasilyevich
Other Authors: Shirokov I. V.
Summary:Title screen
The local symmetries of linear differential equations are investigated by means of proven theorems on the structure of the algebra of local symmetries of translationally and dilatationally invariant differential equations. For a nonparabolic second-order equation, the absence of nontrivial nonlinear local symmetries is proved. This means that the local symmetries reduce to the Lie algebra of linear differential symmetry operators. For the Laplace—Beltrami equation, all local symmetries reduce to the enveloping algebra of the algebra of the conformal group
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 1992
Subjects:
Online Access:http://link.springer.com/article/10.1007%2FBF01018697
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636618

MARC

LEADER 00000nla0a2200000 4500
001 636618
005 20250401092651.0
035 |a (RuTPU)RU\TPU\network\648 
035 |a RU\TPU\network\646 
090 |a 636618 
100 |a 20140219d1992 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Symmetry algebras of linear differential equations  |f A. V. Shapovalov, I. V. Shirokov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 703 (18 tit.)] 
330 |a The local symmetries of linear differential equations are investigated by means of proven theorems on the structure of the algebra of local symmetries of translationally and dilatationally invariant differential equations. For a nonparabolic second-order equation, the absence of nontrivial nonlinear local symmetries is proved. This means that the local symmetries reduce to the Lie algebra of linear differential symmetry operators. For the Laplace—Beltrami equation, all local symmetries reduce to the enveloping algebra of the algebra of the conformal group 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Theoretical and Mathematical Physics  |o Scientific Journal 
463 |t Vol. 92, iss. 1  |v [P. 697-703]  |d 1992 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
701 1 |a Shirokov  |b I. V. 
801 2 |a RU  |b 63413507  |c 20180306  |g RCR 
856 4 |u http://link.springer.com/article/10.1007%2FBF01018697 
942 |c CF