Quadratic algebras and noncommutative integration of Klein-Gordon equations in non-steckel Riemann spaces

Bibliographic Details
Parent link:Russian Physics Journal: Scientific Journal
Vol. 38, iss. 5.— 1995.— [P. 508-512]
Other Authors: Varaksin O. L., Firstov V. V., Shapovalov A. V. Aleksandr Vasilyevich, Shirokov I. V.
Summary:Title screen
he method of noncommutative integration of linear partial differential equations is used to solve the Klein-Gordon equations in Riemann space, in the case when the set of noncommutating symmetry operators of this equation for a quadratic algebra consists of one second-order operator and several first-order operators. Solutions that do not permit variable separation are presented
Режим доступа: по договору с организацией-держателем ресурса
Published: 1995
Subjects:
Online Access:http://link.springer.com/article/10.1007%2FBF00559308
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636605