Local symmetry algebra of the schrodinger equation for the hydrogen atom

গ্রন্থ-পঞ্জীর বিবরন
Parent link:Theoretical and Mathematical Physics: Scientific Journal
Vol. 106, iss. 2.— 1996.— [P. 227-236]
প্রধান লেখক: Drokin A. A.
অন্যান্য লেখক: Shapovalov A. V. Aleksandr Vasilyevich, Shirokov I. V.
সংক্ষিপ্ত:Title screen
We completely describe all local symmetries (that is, differential operators of arbitrary finite orders) of the steady-state Schrodinger equation for the hydrogen atom. This description is based on the reduction of the Schrodinger equation for an isotropic harmonic oscillator to the Schrodinger equation for the hydrogen atom, which generates the reduction of the corresponding symmetry algebras. We show that for an n-dimensional isotropic harmonic oscillator, all nontrivial local symmetry operators belong to the enveloping algebra U (su(n, C)) of the algebra su(n, C). The basis of so(4, C) consists of rotation group generators and Runge-Lenz operators
Режим доступа: по договору с организацией-держателем ресурса
ভাষা:ইংরেজি
প্রকাশিত: 1996
বিষয়গুলি:
অনলাইন ব্যবহার করুন:http://link.springer.com/article/10.1007%2FBF02071077
বিন্যাস: বৈদ্যুতিক গ্রন্থের অধ্যায়
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636593

MARC

LEADER 00000nla0a2200000 4500
001 636593
005 20250401085054.0
035 |a (RuTPU)RU\TPU\network\623 
090 |a 636593 
100 |a 20140217d1996 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Local symmetry algebra of the schrodinger equation for the hydrogen atom  |f A. A. Drokin, A. V. Shapovalov, I. V. Shirokov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 236 (24 tit.)] 
330 |a We completely describe all local symmetries (that is, differential operators of arbitrary finite orders) of the steady-state Schrodinger equation for the hydrogen atom. This description is based on the reduction of the Schrodinger equation for an isotropic harmonic oscillator to the Schrodinger equation for the hydrogen atom, which generates the reduction of the corresponding symmetry algebras. We show that for an n-dimensional isotropic harmonic oscillator, all nontrivial local symmetry operators belong to the enveloping algebra U (su(n, C)) of the algebra su(n, C). The basis of so(4, C) consists of rotation group generators and Runge-Lenz operators 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Theoretical and Mathematical Physics  |o Scientific Journal 
463 |t Vol. 106, iss. 2  |v [P. 227-236]  |d 1996 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Drokin  |b A. A. 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
701 1 |a Shirokov  |b I. V. 
801 2 |a RU  |b 63413507  |c 20180306  |g RCR 
856 4 |u http://link.springer.com/article/10.1007%2FBF02071077 
942 |c CF