The geometry of the Fisher selection dynamics
| Parent link: | Arxiv.org. Physics.— , 1998 |
|---|---|
| Autor principal: | Shapovalov A. V. Aleksandr Vasilyevich |
| Outros Autores: | Evdokimov E. V. |
| Resumo: | Title screen We study the Fisher model describing natural selection in a population with a diploid structure of a genome by differential- geometric methods. For the selection dynamics we introduce an affine connection which is shown to be the projectively Euclidean and the equiaffine one. The selection dynamics is reformulated similar to the motion of an effective particle moving along the geodesic lines in an 'effective external field' of a tensor type. An exact solution is found to the Fisher equations for the special case of fitness matrix associated to the effect of chromosomal imprinting of mammals. Biological sense of the differential- geometric constructions is discussed. The affine curvature is considered as a direct consequence of an allele coupling in the system. This curving of the selection dynamics geometry is related to an inhomogenity of the time flow in the course of the selection |
| Idioma: | inglês |
| Publicado em: |
1998
|
| Assuntos: | |
| Acesso em linha: | http://arxiv.org/abs/physics/9805006 |
| Formato: | Recurso Electrónico Capítulo de Livro |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636576 |
Registos relacionados
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher–KPP equation
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Some Aspects of Nonlinearity and Self-Organization In Biosystems on Examples of Localized Excitations in the DNA Molecule and Generalized Fisher–KPP Model
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Hamiltonian dynamics of Darwin systems
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1998)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1998)
Adomian Decomposition Method for the One-dimensional Nonlocal Fisher–Kolmogorov–Petrovsky–Piskunov Equation
Por: Shapovalov A. V. Aleksandr Vasiljevich
Publicado em: (2019)
Por: Shapovalov A. V. Aleksandr Vasiljevich
Publicado em: (2019)
Approximate Solutions and Symmetry of a Two-Component Nonlocal Reaction-Diffusion Population Model of the Fisher-KPP Type
Por: Shapovalov A. V. Aleksandr Vasiljevich
Publicado em: (2019)
Por: Shapovalov A. V. Aleksandr Vasiljevich
Publicado em: (2019)
Adomyan Decomposition Method for a Two-Component Nonlocal Reaction-Diffusion Model of the Fisher–Kolmogorov–Petrovsky–Piskunov Type
Por: Shapovalov A. V. Aleksandr Vasiljevich
Publicado em: (2019)
Por: Shapovalov A. V. Aleksandr Vasiljevich
Publicado em: (2019)
Determining Deviations in Geometry of the Geokhod Shells
Por: Valter A. V. Aleksandr Viktorovich
Publicado em: (2015)
Por: Valter A. V. Aleksandr Viktorovich
Publicado em: (2015)
Space fractional fisher-kolmogorov-petrovskii-piskunov equation with anomalous diffusion
Por: Prozorov A. A. Alexander Andreevich
Publicado em: (2014)
Por: Prozorov A. A. Alexander Andreevich
Publicado em: (2014)
Computational study of the effect of fuel element geometry on pellets’ maximum temperature
Por: Vorobiev A. V. Aleksandr Vladimirovich
Publicado em: (2017)
Por: Vorobiev A. V. Aleksandr Vladimirovich
Publicado em: (2017)
Estimate of Accuracy of Solution of the Nonlocal Fisher–Kolomogorov–Petrovskii–Piskunov Equation
Por: Levchenko E. A. Evgeny Anatolievich
Publicado em: (2013)
Por: Levchenko E. A. Evgeny Anatolievich
Publicado em: (2013)
Symmetry operators of the two-component Gross—Pitaevskii equation with a Manakov-type nonlocal nonlinearity
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2016)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2016)
Semiclassically Concentrates Waves for the Nonlinear Schrodinger Equation with External Field
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2002)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2002)
Semiclassical Solutions of the Nonlinear Schrödinger Equation
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1999)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1999)
Functional Algebras and Dimensional Reduction in theLPDEs Integration Problem
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1997)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1997)
Using the complex WKB method for studying the evolution of initial pulses obeying the nonlinear Schrodinger equation
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1993)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1993)
Application of approximate symmetries to the construction of solutions of classical and quantum Hamiltonian systems
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1993)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1993)
Effect of initial pulse shape modulation on spontaneous soliton formation in the NSE model
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1992)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1992)
Symmetry algebras of linear differential equations
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1992)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1992)
Finite-dimensional irreducible representations of Hamiltonian lie superalgebras
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1979)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1979)
Structure of a linear canonical transformation
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1976)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1976)
Semiclassical Approach to the Geometric Phase Theory for the Hartree Type Equation
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2004)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2004)
Integration of the d'Alembert equation by means of four-dimensional nonabelian symmetry subalgebras with a single second-order operator
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1995)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1995)
Nonlinear Poisson bracket, F-algebras, and noncommutative integration of linear differential equations
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1992)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1992)
The method of noncommutative integration for linear differential equations. Functional algebras and noncommutative dimensional reduction
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1996)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1996)
Representations of Lie algebras and the problem of noncommutative integrability of linear differential equations
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1991)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1991)
Noncqmmutative integration of Klein-Gordon and Dirac equations in Riemannian spaces with a group of motions
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1991)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1991)
Differential Geometry in DNA Molecules
Por: Bellucci S. Stefano
Publicado em: (2011)
Por: Bellucci S. Stefano
Publicado em: (2011)
Irving Fisher
Por: Dimand, Robert W.
Publicado em: (2019)
Por: Dimand, Robert W.
Publicado em: (2019)
Geometry of the isotropic oscillator driven by the conformal mode
Por: Galajinsky A. V. Anton Vladimirovich
Publicado em: (2018)
Por: Galajinsky A. V. Anton Vladimirovich
Publicado em: (2018)
Dynamics of UF[6] Desublimation with the Influence of Tank Geometry for Various Coolant Temperature
Publicado em: (2016)
Publicado em: (2016)
World-line geometry probed by fast spinning particle
Por: Deriglazov A. A. Alexei Anatolievich
Publicado em: (2015)
Por: Deriglazov A. A. Alexei Anatolievich
Publicado em: (2015)
Lobachevsky geometry of (super)conformal mechanics
Por: Akopyan (Hakobyan) T. S. Tigran Stepanovich
Publicado em: (2009)
Por: Akopyan (Hakobyan) T. S. Tigran Stepanovich
Publicado em: (2009)
Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Symmetry operators of the nonlocal fisher- kolmogorov-petrovskii-piskunov equation with a quadratic operator
Por: Levchenko E. A. Evgeny Anatolievich
Publicado em: (2014)
Por: Levchenko E. A. Evgeny Anatolievich
Publicado em: (2014)
On the near horizon rotating black hole geometries with NUT charges
Por: Galajinsky A. V. Anton Vladimirovich
Publicado em: (2016)
Por: Galajinsky A. V. Anton Vladimirovich
Publicado em: (2016)
Nonlinear Fokker-Planck Equation in the Model of Asset Returns
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2008)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2008)
Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2007)
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2007)
Nonlocal one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation with abnormal diffusion
Por: Prozorov A. A. Alexander Andreevich
Publicado em: (2014)
Por: Prozorov A. A. Alexander Andreevich
Publicado em: (2014)
Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
Por: Levchenko E. A. Evgeny Anatolievich
Publicado em: (2016)
Por: Levchenko E. A. Evgeny Anatolievich
Publicado em: (2016)
Registos relacionados
-
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher–KPP equation
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018) -
Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018) -
Some Aspects of Nonlinearity and Self-Organization In Biosystems on Examples of Localized Excitations in the DNA Molecule and Generalized Fisher–KPP Model
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018) -
Hamiltonian dynamics of Darwin systems
Por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1998) -
Adomian Decomposition Method for the One-dimensional Nonlocal Fisher–Kolmogorov–Petrovsky–Piskunov Equation
Por: Shapovalov A. V. Aleksandr Vasiljevich
Publicado em: (2019)