Semiclassically Concentrates Waves for the Nonlinear Schrodinger Equation with External Field
| Parent link: | Symmetry in Nonlinear Mathematical Physics, 9-15 July, 2001, Kyiv (Kiev), Ukraine: Proceedings of Institute of Mathematics of NAS of Ukraine. [P. 701-711].— , 2002 |
|---|---|
| Hlavní autor: | Shapovalov A. V. Aleksandr Vasilyevich |
| Další autoři: | Trifonov A. Yu. Andrey Yurievich |
| Shrnutí: | Title screen |
| Jazyk: | angličtina |
| Vydáno: |
2002
|
| Témata: | |
| On-line přístup: | http://www.imath.kiev.ua/~symmetry/Symmetry2001/Shapovalov701-711.pdf |
| Médium: | Elektronický zdroj Kapitola |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636546 |
Podobné jednotky
Semiclassical Solutions of the Nonlinear Schrödinger Equation
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1999)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1999)
A semiclassical approximation for the nonstationary two-dimensional nonlinear Schrodinger equation with an external field in polar coordinates
Autor: Borisov A. V. Aleksey Vladimirovich
Vydáno: (2006)
Autor: Borisov A. V. Aleksey Vladimirovich
Vydáno: (2006)
Semiclassical trajectory-coherent states of the nonlinear Schrodinger equation with unitary nonlinearity
Vydáno: (1999)
Vydáno: (1999)
Using the complex WKB method for studying the evolution of initial pulses obeying the nonlinear Schrodinger equation
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1993)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1993)
A Semiclassical Approach to the Nonlocal Nonlinear Schrödinger Equation with a Non-Hermitian Term
Autor: Kulagin A. E. Anton Evgenievich
Vydáno: (2024)
Autor: Kulagin A. E. Anton Evgenievich
Vydáno: (2024)
The Nonlinear Schrodinger Equation for a Many-Dimensional System in an Oscillator Field
Autor: Borisov A. V. Aleksey Vladimirovich
Vydáno: (2005)
Autor: Borisov A. V. Aleksey Vladimirovich
Vydáno: (2005)
Free Schrodinger equation analyzed in terms of the wave equation
Autor: Bagrov V. G. Vladislav Gavriilovich
Vydáno: (1990)
Autor: Bagrov V. G. Vladislav Gavriilovich
Vydáno: (1990)
Semiclassical Approach to the Geometric Phase Theory for the Hartree Type Equation
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2004)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2004)
Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2018)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2018)
Separation of variables in the wave equation. Sets of the type (1.1) and Schrodinger equation
Autor: Bagrov V. G.
Vydáno: (1991)
Autor: Bagrov V. G.
Vydáno: (1991)
Nonlinear Fokker-Planck Equation in the Model of Asset Returns
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2008)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2008)
The Gross–Pitaevskii Equation with a Nonlocal Interaction in a Semiclassical Approximation on a Curve
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2020)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2020)
Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2007)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2007)
One-Dimensional Fokker–Planck Equation with Quadratically Nonlinear Quasilocal Drift
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2018)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2018)
Nonlinear Poisson bracket, F-algebras, and noncommutative integration of linear differential equations
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1992)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1992)
Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
Autor: Levchenko E. A. Evgeny Anatolievich
Vydáno: (2016)
Autor: Levchenko E. A. Evgeny Anatolievich
Vydáno: (2016)
Symmetry operators of the two-component Gross—Pitaevskii equation with a Manakov-type nonlocal nonlinearity
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2016)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (2016)
Some problems of symmetry of the Schrodinger equations
Vydáno: (1991)
Vydáno: (1991)
The Dirac equation in an external electromagnetic field: symmetry algebra and exact integration
Autor: Breev A. I. Aleksandr Igorevich
Vydáno: (2016)
Autor: Breev A. I. Aleksandr Igorevich
Vydáno: (2016)
The one-dimensional Fisher–Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation
Autor: Trifonov A. Yu. Andrey Yurievich
Vydáno: (2009)
Autor: Trifonov A. Yu. Andrey Yurievich
Vydáno: (2009)
Nonlinear diffusion waves in high magnetic fields
Vydáno: (2015)
Vydáno: (2015)
Investigation of the Dynamics of a Soliton-Like Solution to the Nonlinear Schrцdinger Equation with an External Field
Vydáno: (2004)
Vydáno: (2004)
Symmetry of the Dirac equation with an external non-Abelian gauge field
Autor: Bagrov V. G.
Vydáno: (1986)
Autor: Bagrov V. G.
Vydáno: (1986)
Local symmetry algebra of the schrodinger equation for the hydrogen atom
Autor: Drokin A. A.
Vydáno: (1996)
Autor: Drokin A. A.
Vydáno: (1996)
Semiclassical symmetry of the Gross-Pitaevskii equation with quadratic nonlocal Hamiltonian
Autor: Lisok A. L. Aleksandr Leonidovich
Vydáno: (2007)
Autor: Lisok A. L. Aleksandr Leonidovich
Vydáno: (2007)
Semiclassical approximation for the twodimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with nonlocal nonlinearity in polar coordinates
Autor: Trifonov A. Yu. Andrey Yurievich
Vydáno: (2011)
Autor: Trifonov A. Yu. Andrey Yurievich
Vydáno: (2011)
Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations
Autor: Belov V. V.
Vydáno: (2002)
Autor: Belov V. V.
Vydáno: (2002)
Symmetries of the Fisher–Kolmogorov–Petrovskii–Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation
Vydáno: (2012)
Vydáno: (2012)
Symmetry algebras of linear differential equations
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1992)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1992)
Quasiparticles Described by the Gross–Pitaevskii Equation in the Semiclassical Approximation
Autor: Kulagin A. E. Anton Evgenievich
Vydáno: (2015)
Autor: Kulagin A. E. Anton Evgenievich
Vydáno: (2015)
Family of Asymptotic Solutions to the Two-Dimensional Kinetic Equation with a Nonlocal Cubic Nonlinearity
Autor: Shapovalov A. V. Aleksandr Vasiljevich
Vydáno: (2022)
Autor: Shapovalov A. V. Aleksandr Vasiljevich
Vydáno: (2022)
Separation of variables in the Dirac equation in Stackel spaces. II. External gauge fields
Autor: Bagrov V. G.
Vydáno: (1991)
Autor: Bagrov V. G.
Vydáno: (1991)
Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
Autor: Borisov A. V. Aleksey Vladimirovich
Vydáno: (2005)
Autor: Borisov A. V. Aleksey Vladimirovich
Vydáno: (2005)
Generation of new exactly solvable potentials of a nonstationary Schrodinger equation
Autor: Bagrov V. G.
Vydáno: (1991)
Autor: Bagrov V. G.
Vydáno: (1991)
Representations of Lie algebras and the problem of noncommutative integrability of linear differential equations
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1991)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1991)
A new method of exact solution generation for the one-dimensional Schrodinger equation
Autor: Bagrov V. G.
Vydáno: (1990)
Autor: Bagrov V. G.
Vydáno: (1990)
Equation of solvated ion oscillations in solution under an external periodic electric field
Vydáno: (2017)
Vydáno: (2017)
Semiclassical Approach to the Nonlocal Kinetic Model of Metal Vapor Active Media
Autor: Shapovalov A. V. Aleksandr Vasiljevich
Vydáno: (2021)
Autor: Shapovalov A. V. Aleksandr Vasiljevich
Vydáno: (2021)
The method of noncommutative integration for linear differential equations. Functional algebras and noncommutative dimensional reduction
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1996)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1996)
Noncqmmutative integration of Klein-Gordon and Dirac equations in Riemannian spaces with a group of motions
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1991)
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1991)
Podobné jednotky
-
Semiclassical Solutions of the Nonlinear Schrödinger Equation
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1999) -
A semiclassical approximation for the nonstationary two-dimensional nonlinear Schrodinger equation with an external field in polar coordinates
Autor: Borisov A. V. Aleksey Vladimirovich
Vydáno: (2006) -
Semiclassical trajectory-coherent states of the nonlinear Schrodinger equation with unitary nonlinearity
Vydáno: (1999) -
Using the complex WKB method for studying the evolution of initial pulses obeying the nonlinear Schrodinger equation
Autor: Shapovalov A. V. Aleksandr Vasilyevich
Vydáno: (1993) -
A Semiclassical Approach to the Nonlocal Nonlinear Schrödinger Equation with a Non-Hermitian Term
Autor: Kulagin A. E. Anton Evgenievich
Vydáno: (2024)