Semiclassical Approach to the Geometric Phase Theory for the Hartree Type Equation
| Parent link: | Symmetry in Nonlinear Mathematical Physics, June 23-29, 2003, Kyiv (Kiev), Ukraine: Proceedings of Institute of Mathematics of NAS of Ukraine. [P. 1454-1465].— , 2004 |
|---|---|
| Autor principal: | Shapovalov A. V. Aleksandr Vasilyevich |
| Outros Autores: | Trifonov A. Yu. Andrey Yurievich, Lisok A. L. Aleksandr Leonidovich |
| Resumo: | Title screen Quasi-energy states and a spectrum of quasi-energies asymptotic in small parameter h (h-0) are constructed for a multidimensional Hartree type equation with non-local nonlinearity and with an external field cyclic in time. The quasi-energy states are a special case of trajectory coherent solutions of the Hartree type equation, which belong to the class of semiclassically concentrated functions. A function of this class describes a solitary wave localized in a neighborhood of a phase trajectory in the space of moments of the solution. The phase trajectory is closed due to the configuration of the external field. The Aharonov-Anandan geometric phases, which characterize a system “as a whole”, are found for the quasi-energy states in a semiclassical approximation accurate to O(h3/2), h-0 Режим доступа: по договору с организацией-держателем ресурса |
| Idioma: | inglês |
| Publicado em: |
2004
|
| Assuntos: | |
| Acesso em linha: | http://www.imath.kiev.ua/~snmp2003/Proceedings/shapovalov.pdf |
| Formato: | Recurso Eletrônico Capítulo de Livro |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636531 |
Registros relacionados
Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations
por: Belov V. V.
Publicado em: (2002)
por: Belov V. V.
Publicado em: (2002)
Formalism of semiclassical asymptotics for a two-component Hartree-type equation
por: Smirnova E. I.
Publicado em: (2009)
por: Smirnova E. I.
Publicado em: (2009)
Semiclassical Solutions of the Nonlinear Schrödinger Equation
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1999)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1999)
The Geometric Phases and Quasienergy Spectral Series of a Hartree-Type Equation with a Quadratic Potential
Publicado em: (2004)
Publicado em: (2004)
Semiclassically Concentrates Waves for the Nonlinear Schrodinger Equation with External Field
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2002)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2002)
Semiclassical spectral series of the two-component Hartree-type operator
Publicado em: (2007)
Publicado em: (2007)
The evolution operator of the Hartree-type equation with a quadratic potential
por: Lisok A. L. Aleksandr Leonidovich
Publicado em: (2004)
por: Lisok A. L. Aleksandr Leonidovich
Publicado em: (2004)
Symmetry operators of a Hartree-type equation with quadratic potential
por: Lisok A. L. Aleksandr Leonidovich
Publicado em: (2005)
por: Lisok A. L. Aleksandr Leonidovich
Publicado em: (2005)
The trajectory-coherent approximation and the system of moments for the Hartree type equation
por: Belov V. V.
Publicado em: (2002)
por: Belov V. V.
Publicado em: (2002)
Green's Function of a Hartree-Type Equation with a Quadratic Potential
por: Lisok A. L. Aleksandr Leonidovich
Publicado em: (2004)
por: Lisok A. L. Aleksandr Leonidovich
Publicado em: (2004)
The Gross–Pitaevskii Equation with a Nonlocal Interaction in a Semiclassical Approximation on a Curve
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2020)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2020)
Berry phases for 3D Hartree type equations with a quadratic potential and a uniform magnetic field
por: Litvinets F. N.
Publicado em: (2007)
por: Litvinets F. N.
Publicado em: (2007)
Symmetry operators of the two-component Gross—Pitaevskii equation with a Manakov-type nonlocal nonlinearity
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2016)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2016)
Semiclassical Approach to the Nonlocal Kinetic Model of Metal Vapor Active Media
por: Shapovalov A. V. Aleksandr Vasiljevich
Publicado em: (2021)
por: Shapovalov A. V. Aleksandr Vasiljevich
Publicado em: (2021)
Semiclassical symmetry of the Gross-Pitaevskii equation with quadratic nonlocal Hamiltonian
por: Lisok A. L. Aleksandr Leonidovich
Publicado em: (2007)
por: Lisok A. L. Aleksandr Leonidovich
Publicado em: (2007)
Symmetry algebras of linear differential equations
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1992)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1992)
Quasiparticles Described by the Gross–Pitaevskii Equation in the Semiclassical Approximation
por: Kulagin A. E. Anton Evgenievich
Publicado em: (2015)
por: Kulagin A. E. Anton Evgenievich
Publicado em: (2015)
A Semiclassical Approach to the Nonlocal Nonlinear Schrödinger Equation with a Non-Hermitian Term
por: Kulagin A. E. Anton Evgenievich
Publicado em: (2024)
por: Kulagin A. E. Anton Evgenievich
Publicado em: (2024)
Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
por: Borisov A. V. Aleksey Vladimirovich
Publicado em: (2005)
por: Borisov A. V. Aleksey Vladimirovich
Publicado em: (2005)
Quantum mechanics with geometric constraints of Friedmann type
por: Lasukova T. V. Tatjyana Viktorovna
Publicado em: (2017)
por: Lasukova T. V. Tatjyana Viktorovna
Publicado em: (2017)
Nonlinear Fokker-Planck Equation in the Model of Asset Returns
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2008)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2008)
Representations of Lie algebras and the problem of noncommutative integrability of linear differential equations
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1991)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1991)
Nonlinear Poisson bracket, F-algebras, and noncommutative integration of linear differential equations
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1992)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1992)
Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2007)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2007)
One-Dimensional Fokker–Planck Equation with Quadratically Nonlinear Quasilocal Drift
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
The method of noncommutative integration for linear differential equations. Functional algebras and noncommutative dimensional reduction
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1996)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1996)
Noncqmmutative integration of Klein-Gordon and Dirac equations in Riemannian spaces with a group of motions
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1991)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1991)
Derivation of Maxwell-type equations for open systems
por: Khugaev A. V. Avas Vasilevich
Publicado em: (2018)
por: Khugaev A. V. Avas Vasilevich
Publicado em: (2018)
Exact Solutions and Symmetry Operators for the Nonlocal Gross-Pitaevskii Equation with Quadratic Potential
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2005)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2005)
Using the complex WKB method for studying the evolution of initial pulses obeying the nonlinear Schrodinger equation
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1993)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1993)
Semiclassical trajectory-coherent states of the nonlinear Schrodinger equation with unitary nonlinearity
Publicado em: (1999)
Publicado em: (1999)
Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
por: Levchenko E. A. Evgeny Anatolievich
Publicado em: (2016)
por: Levchenko E. A. Evgeny Anatolievich
Publicado em: (2016)
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher–KPP equation
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Legendre transformations and Clairaut-type equations
por: Lavrov P. M. Petr Mikhaylovich
Publicado em: (2016)
por: Lavrov P. M. Petr Mikhaylovich
Publicado em: (2016)
Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Separation of variables in the wave equation. Sets of the type (1.1) and Schrodinger equation
por: Bagrov V. G.
Publicado em: (1991)
por: Bagrov V. G.
Publicado em: (1991)
Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2018)
Integration of the d'Alembert equation by means of four-dimensional nonabelian symmetry subalgebras with a single second-order operator
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1995)
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1995)
A semiclassical approximation for the nonstationary two-dimensional nonlinear Schrodinger equation with an external field in polar coordinates
por: Borisov A. V. Aleksey Vladimirovich
Publicado em: (2006)
por: Borisov A. V. Aleksey Vladimirovich
Publicado em: (2006)
The one-dimensional Fisher–Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation
por: Trifonov A. Yu. Andrey Yurievich
Publicado em: (2009)
por: Trifonov A. Yu. Andrey Yurievich
Publicado em: (2009)
Registros relacionados
-
Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations
por: Belov V. V.
Publicado em: (2002) -
Formalism of semiclassical asymptotics for a two-component Hartree-type equation
por: Smirnova E. I.
Publicado em: (2009) -
Semiclassical Solutions of the Nonlinear Schrödinger Equation
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (1999) -
The Geometric Phases and Quasienergy Spectral Series of a Hartree-Type Equation with a Quadratic Potential
Publicado em: (2004) -
Semiclassically Concentrates Waves for the Nonlinear Schrodinger Equation with External Field
por: Shapovalov A. V. Aleksandr Vasilyevich
Publicado em: (2002)