Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation

Bibliographische Detailangaben
Parent link:Symmetry, Integrability and Geometry: Methods and Applications (SIGMA): Scientific Journal
Vol. 1.— 2005.— [17 p.]
1. Verfasser: Borisov A. V. Aleksey Vladimirovich
Weitere Verfasser: Shapovalov A. V. Aleksandr Vasilyevich, Trifonov A. Yu. Andrey Yurievich
Zusammenfassung:Title screen
The Gross–Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB–Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter h, h-0, in the class of functions concentrated in the neighborhood of an unclosed surface associated with the phase curve that describes the evolution of surface vertex. The functions of this class are of the one-soliton form along the direction of the surface normal. The general constructions are illustrated by examples
Sprache:Englisch
Veröffentlicht: 2005
Schlagworte:
Online-Zugang:http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sigma&paperid=19&option_lang=rus
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636513

MARC

LEADER 00000nla0a2200000 4500
001 636513
005 20250328103736.0
035 |a (RuTPU)RU\TPU\network\521 
090 |a 636513 
100 |a 20140210d2005 k||y0rusy50 ba 
101 0 |a eng 
102 |a RU 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation  |f A. V. Borisov, A. V. Shapovalov, A. Yu. Trifonov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 33 tit.] 
330 |a The Gross–Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB–Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter h, h-0, in the class of functions concentrated in the neighborhood of an unclosed surface associated with the phase curve that describes the evolution of surface vertex. The functions of this class are of the one-soliton form along the direction of the surface normal. The general constructions are illustrated by examples 
461 |t Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)  |o Scientific Journal 
463 |t Vol. 1  |v [17 p.]  |d 2005 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a WKB–Maslov complex germ method 
610 1 |a semiclassical asymptotics 
610 1 |a Gross–Pitaevskii equation 
610 1 |a solitons 
610 1 |a symmetry operators 
700 1 |a Borisov  |b A. V.  |c mathematician  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1980-  |g Aleksey Vladimirovich  |3 (RuTPU)RU\TPU\pers\31743 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
701 1 |a Trifonov  |b A. Yu.  |c physicist, mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1963-  |g Andrey Yurievich  |3 (RuTPU)RU\TPU\pers\30754 
801 2 |a RU  |b 63413507  |c 20180306  |g RCR 
856 4 |u http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sigma&paperid=19&option_lang=rus 
942 |c CF