Formation, control, and dynamics of N localized structures in the Peyrard-Bishop model

Detalles Bibliográficos
Parent link:Physical Review E: Scientific Journal
Vol. 76, iss. 6.— 2007.— [066603 , 13 p.]
Autor Principal: Elias Zamora-Sillero
Outros autores: Shapovalov A. V. Aleksandr Vasilyevich, Francisco J. Esteban
Summary:Title screen
We explore in detail the creation of stable localized structures in the form of localized energy distributions that arise from general initial conditions in the Peyrard-Bishop (PB) model. By means of a method based on the inverse scattering transform we study the solutions of PB model equations obtained in the form of planar waves whose amplitudes are described by the nonlinear Schrödinger equation (NLS). For localized initial conditions different from the pure N-soliton shape, we have obtained analytical results that predict and control the number, amplitude, and velocity of the NLS solitary waves. To verify the validity of these results we have carried out numerical simulations of the PB model with the use of realistic values of parameters and the initial conditions in the form of planar waves whose modulated amplitudes are given by the examples studied in the NLS. In the simulations we have found that N localized structures arise in agreement with the prediction of the analytical results obtained in the NLS
Режим доступа: по договору с организацией-держателем ресурса
Idioma:inglés
Publicado: 2007
Subjects:
Acceso en liña:http://dx.doi.org/10.1103/PhysRevE.76.066603
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636492

MARC

LEADER 00000nla0a2200000 4500
001 636492
005 20250328093143.0
035 |a (RuTPU)RU\TPU\network\467 
035 |a RU\TPU\network\466 
090 |a 636492 
100 |a 20140204d2007 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Formation, control, and dynamics of N localized structures in the Peyrard-Bishop model  |f Elias Zamora-Sillero, A. V. Shapovalov, Francisco J. Esteban 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 58 tit.] 
330 |a We explore in detail the creation of stable localized structures in the form of localized energy distributions that arise from general initial conditions in the Peyrard-Bishop (PB) model. By means of a method based on the inverse scattering transform we study the solutions of PB model equations obtained in the form of planar waves whose amplitudes are described by the nonlinear Schrödinger equation (NLS). For localized initial conditions different from the pure N-soliton shape, we have obtained analytical results that predict and control the number, amplitude, and velocity of the NLS solitary waves. To verify the validity of these results we have carried out numerical simulations of the PB model with the use of realistic values of parameters and the initial conditions in the form of planar waves whose modulated amplitudes are given by the examples studied in the NLS. In the simulations we have found that N localized structures arise in agreement with the prediction of the analytical results obtained in the NLS 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Physical Review E  |o Scientific Journal 
463 |t Vol. 76, iss. 6  |v [066603 , 13 p.]  |d 2007 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 0 |a Elias Zamora-Sillero 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
701 0 |a Francisco J. Esteban 
801 2 |a RU  |b 63413507  |c 20150416  |g RCR 
856 4 |u http://dx.doi.org/10.1103/PhysRevE.76.066603 
942 |c CF