Berry phases for 3D Hartree type equations with a quadratic potential and a uniform magnetic field

Dettagli Bibliografici
Parent link:Journal of Physics A: Mathematical and Theoretical
Vol. 40, № 6.— 2007.— [11129, 22 p.]
Autore principale: Litvinets F. N.
Altri autori: Shapovalov A. V. Aleksandr Vasilyevich, Trifonov A. Yu. Andrey Yurievich
Riassunto:Title screen
A countable set of asymptotic space -- localized solutions is constructed by the complex germ method in the adiabatic approximation for 3D Hartree type equations with a quadratic potential. The asymptotic parameter is 1/T, where T»1 is the adiabatic evolution time. A generalization of the Berry phase of the linear Schr\"odinger equation is formulated for the Hartree type equation. For the solutions constructed, the Berry phases are found in explicit form.
Lingua:inglese
Pubblicazione: 2007
Soggetti:
Accesso online:http://dx.doi.org/10.1088/1751-8113/40/36/013
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636490

MARC

LEADER 00000naa0a2200000 4500
001 636490
005 20250328092811.0
035 |a (RuTPU)RU\TPU\network\465 
090 |a 636490 
100 |a 20140204d2007 k||y0rusy50 ba 
101 0 |a eng 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Berry phases for 3D Hartree type equations with a quadratic potential and a uniform magnetic field  |f F. N. Litvinets, A. V. Shapovalov, A. Yu. Trifonov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 15 tit.] 
330 |a A countable set of asymptotic space -- localized solutions is constructed by the complex germ method in the adiabatic approximation for 3D Hartree type equations with a quadratic potential. The asymptotic parameter is 1/T, where T»1 is the adiabatic evolution time. A generalization of the Berry phase of the linear Schr\"odinger equation is formulated for the Hartree type equation. For the solutions constructed, the Berry phases are found in explicit form. 
461 |t Journal of Physics A: Mathematical and Theoretical 
463 |t Vol. 40, № 6  |v [11129, 22 p.]  |d 2007 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Litvinets  |b F. N. 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
701 1 |a Trifonov  |b A. Yu.  |c physicist, mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1963-  |g Andrey Yurievich  |3 (RuTPU)RU\TPU\pers\30754 
801 2 |a RU  |b 63413507  |c 20200311  |g RCR 
856 4 |u http://dx.doi.org/10.1088/1751-8113/40/36/013 
942 |c CF