The one-dimensional Fisher–Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation

Библиографические подробности
Источник:Russian Physics Journal: Scientific Journal
Vol. 52, iss. 9.— 2009.— [P. 899-911]
Главный автор: Trifonov A. Yu. Andrey Yurievich
Другие авторы: Shapovalov A. V. Aleksandr Vasilyevich
Примечания:Title screen
A model of the evolution of a bacterium population based on the Fisher–Kolmogorov equation is considered. For a one-dimensional equation of the Fisher–Kolmogorov type that contains quadratically nonlinear nonlocal kinetics and weak diffusion terms, a general scheme of semiclassically concentrated asymptotic solutions is developed based on the complex WKB–Maslov method. The solution of the Cauchy problem is constructed in the class of semiclassically concentrated functions. In constructing the solutions, an essential part is played by the dynamic set of Einstein–Ehrenfest equations (a set of equations in average and centered moments) derived in this work. The symmetry operators of the equation, the nonlinear evolution operator, and the class of particular asymptotic semiclassical solutions are found
Режим доступа: по договору с организацией-держателем ресурса
Язык:английский
Опубликовано: 2009
Предметы:
Online-ссылка:http://link.springer.com/article/10.1007/s11182-010-9316-2
Формат: Электронный ресурс Статья
Запись в KOHA:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636471

Схожие документы