The one-dimensional Fisher–Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation

書誌詳細
Parent link:Russian Physics Journal: Scientific Journal
Vol. 52, iss. 9.— 2009.— [P. 899-911]
第一著者: Trifonov A. Yu. Andrey Yurievich
その他の著者: Shapovalov A. V. Aleksandr Vasilyevich
要約:Title screen
A model of the evolution of a bacterium population based on the Fisher–Kolmogorov equation is considered. For a one-dimensional equation of the Fisher–Kolmogorov type that contains quadratically nonlinear nonlocal kinetics and weak diffusion terms, a general scheme of semiclassically concentrated asymptotic solutions is developed based on the complex WKB–Maslov method. The solution of the Cauchy problem is constructed in the class of semiclassically concentrated functions. In constructing the solutions, an essential part is played by the dynamic set of Einstein–Ehrenfest equations (a set of equations in average and centered moments) derived in this work. The symmetry operators of the equation, the nonlinear evolution operator, and the class of particular asymptotic semiclassical solutions are found
Режим доступа: по договору с организацией-держателем ресурса
言語:英語
出版事項: 2009
主題:
オンライン・アクセス:http://link.springer.com/article/10.1007/s11182-010-9316-2
フォーマット: 電子媒体 図書の章
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636471

MARC

LEADER 00000nla0a2200000 4500
001 636471
005 20250328090220.0
035 |a (RuTPU)RU\TPU\network\445 
035 |a RU\TPU\network\441 
090 |a 636471 
100 |a 20140130d2009 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a The one-dimensional Fisher–Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation  |f A. Yu. Trifonov, A. V. Shapovalov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 911 (15 tit.)] 
330 |a A model of the evolution of a bacterium population based on the Fisher–Kolmogorov equation is considered. For a one-dimensional equation of the Fisher–Kolmogorov type that contains quadratically nonlinear nonlocal kinetics and weak diffusion terms, a general scheme of semiclassically concentrated asymptotic solutions is developed based on the complex WKB–Maslov method. The solution of the Cauchy problem is constructed in the class of semiclassically concentrated functions. In constructing the solutions, an essential part is played by the dynamic set of Einstein–Ehrenfest equations (a set of equations in average and centered moments) derived in this work. The symmetry operators of the equation, the nonlinear evolution operator, and the class of particular asymptotic semiclassical solutions are found 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Russian Physics Journal  |o Scientific Journal 
463 |t Vol. 52, iss. 9  |v [P. 899-911]  |d 2009 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a semiclassical asymptotics 
610 1 |a квазиклассическая асимптотика 
610 1 |a complex flow 
610 1 |a поток 
610 1 |a equation 
610 1 |a уравнения 
700 1 |a Trifonov  |b A. Yu.  |c physicist, mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1963-  |g Andrey Yurievich  |3 (RuTPU)RU\TPU\pers\30754 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
801 2 |a RU  |b 63413507  |c 20180306  |g RCR 
856 4 |u http://link.springer.com/article/10.1007/s11182-010-9316-2 
942 |c CF