Semiclassical approximation for the twodimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with nonlocal nonlinearity in polar coordinates

Bibliografske podrobnosti
Parent link:Russian Physics Journal: Scientific Journal
Vol. 53, iss. 12.— 2011.— [P. 1243-1253]
Glavni avtor: Trifonov A. Yu. Andrey Yurievich
Drugi avtorji: Shapovalov A. V. Aleksandr Vasilyevich
Izvleček:Title screen
The two-dimensional Kolmogorov–Petrovskii–Piskunov–Fisher equation with nonlocal nonlinearity and axially symmetric coefficients in polar coordinates is considered. The method of separation of variables in polar coordinates and the nonlinear superposition principle proposed by the authors are used to construct the asymptotic solution of a Cauchy problem in a special class of smooth functions. The functions of this class arbitrarily depend on the angular variable and are semiclassically concentrated in the radial variable. The angular dependence of the function has been exactly taken into account in the solution. For the radial equation, the formalism of semiclassical asymptotics has been developed for the class of functions which singularly depend on an asymptotic small parameter, whose part is played by the diffusion coefficient. A dynamic system of Einstein–Ehrenfest equations (a system of equations in mean and central moments) has been derived. The evolution operator for the class of functions under consideration has been constructed in explicit form
Режим доступа: по договору с организацией-держателем ресурса
Jezik:angleščina
Izdano: 2011
Teme:
Online dostop:http://link.springer.com/article/10.1007/s11182-011-9556-9
Format: Elektronski Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636467

MARC

LEADER 00000nla0a2200000 4500
001 636467
005 20250328085710.0
035 |a (RuTPU)RU\TPU\network\441 
090 |a 636467 
100 |a 20140129d2011 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Semiclassical approximation for the twodimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with nonlocal nonlinearity in polar coordinates  |f A. Yu. Trifonov, A. V. Shapovalov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [Referen.: p. 1253 (10 title)] 
330 |a The two-dimensional Kolmogorov–Petrovskii–Piskunov–Fisher equation with nonlocal nonlinearity and axially symmetric coefficients in polar coordinates is considered. The method of separation of variables in polar coordinates and the nonlinear superposition principle proposed by the authors are used to construct the asymptotic solution of a Cauchy problem in a special class of smooth functions. The functions of this class arbitrarily depend on the angular variable and are semiclassically concentrated in the radial variable. The angular dependence of the function has been exactly taken into account in the solution. For the radial equation, the formalism of semiclassical asymptotics has been developed for the class of functions which singularly depend on an asymptotic small parameter, whose part is played by the diffusion coefficient. A dynamic system of Einstein–Ehrenfest equations (a system of equations in mean and central moments) has been derived. The evolution operator for the class of functions under consideration has been constructed in explicit form 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Russian Physics Journal  |o Scientific Journal 
463 |t Vol. 53, iss. 12  |v [P. 1243-1253]  |d 2011 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a nonlocal nonlinearity 
610 1 |a нелинейность 
610 1 |a уравнение Фишера-Колмогорова-Петровского-Пискунова 
610 1 |a equation 
610 1 |a semiclassical asymptotics 
610 1 |a квазиклассическая асимптотика 
700 1 |a Trifonov  |b A. Yu.  |c physicist, mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1963-  |g Andrey Yurievich  |3 (RuTPU)RU\TPU\pers\30754 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
801 2 |a RU  |b 63413507  |c 20150321  |g RCR 
856 4 |u http://link.springer.com/article/10.1007/s11182-011-9556-9 
942 |c CF