Estimate of Accuracy of Solution of the Nonlocal Fisher–Kolomogorov–Petrovskii–Piskunov Equation
| Parent link: | Russian Physics Journal: Scientific Journal Vol. 55, iss. 12.— 2013.— [P. 1425-1433] |
|---|---|
| Автор: | |
| Співавтор: | |
| Інші автори: | , |
| Резюме: | Title screen The discrepancy of semiclassical asymptotics for the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation is investigated. It is shown that there exist values of the parameters of the system, for which the norm of the discrepancy is bounded and the accuracy of the asymptotic solution is preserved over the entire time interval, but also values of the parameters, for which the discrepancy tends to zero, and the asymptotic solution tends to the exact one Режим доступа: по договору с организацией-держателем ресурса |
| Опубліковано: |
2013
|
| Предмети: | |
| Онлайн доступ: | http://dx.doi.org/10.1007/s11182-013-9976-9 |
| Формат: | Електронний ресурс Частина з книги |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636448 |
| Резюме: | Title screen The discrepancy of semiclassical asymptotics for the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation is investigated. It is shown that there exist values of the parameters of the system, for which the norm of the discrepancy is bounded and the accuracy of the asymptotic solution is preserved over the entire time interval, but also values of the parameters, for which the discrepancy tends to zero, and the asymptotic solution tends to the exact one Режим доступа: по договору с организацией-держателем ресурса |
|---|---|
| DOI: | 10.1007/s11182-013-9976-9 |