Estimate of Accuracy of Solution of the Nonlocal Fisher–Kolomogorov–Petrovskii–Piskunov Equation

Бібліографічні деталі
Parent link:Russian Physics Journal: Scientific Journal
Vol. 55, iss. 12.— 2013.— [P. 1425-1433]
Автор: Levchenko E. A. Evgeny Anatolievich
Співавтор: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра высшей математики и математической физики (ВММФ)
Інші автори: Trifonov A. Yu. Andrey Yurievich, Shapovalov A. V. Aleksandr Vasilyevich
Резюме:Title screen
The discrepancy of semiclassical asymptotics for the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation is investigated. It is shown that there exist values of the parameters of the system, for which the norm of the discrepancy is bounded and the accuracy of the asymptotic solution is preserved over the entire time interval, but also values of the parameters, for which the discrepancy tends to zero, and the asymptotic solution tends to the exact one
Режим доступа: по договору с организацией-держателем ресурса
Опубліковано: 2013
Предмети:
Онлайн доступ:http://dx.doi.org/10.1007/s11182-013-9976-9
Формат: Електронний ресурс Частина з книги
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636448
Опис
Резюме:Title screen
The discrepancy of semiclassical asymptotics for the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation is investigated. It is shown that there exist values of the parameters of the system, for which the norm of the discrepancy is bounded and the accuracy of the asymptotic solution is preserved over the entire time interval, but also values of the parameters, for which the discrepancy tends to zero, and the asymptotic solution tends to the exact one
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1007/s11182-013-9976-9