Влияние поверхностного излучения на тепловую конвекцию во вращающейся кубической полости

Bibliografische gegevens
Parent link:Перспективы развития фундаментальных наук=Prospects of Fundamental Sciences Development: сборник научных трудов XVIII Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 27-30 апреля 2021 г./ Национальный исследовательский Томский политехнический университет (ТПУ) ; под ред. И. А. Курзиной, Г. А. Вороновой.— , 2021
Т. 3 : Математика.— 2021.— [С. 64-66]
Hoofdauteur: Михайленко С. А.
Coauteur: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Andere auteurs: Шеремет М. А. Михаил Александрович (727)
Samenvatting:Заглавие с экрана
An investigation of convective heat transfer under an effect of thermal radiation in a rotating cubic cavity has been carried out numerically. Vertical left wall is heated, vertical right wall is cooled, and other walls of the cavity are insulated. The cavity rotates at a constant angular velocity in counterclockwise direction relative to z-axis. The cavity is filled with a fluid satisfying the Boussinesq approximation. Fluid is Newtonian and incompressible and all physical parameters are not dependent on a temperature. All surfaces inside the cavity are reflectors and emitters of thermal radiation, while the medium is transparent to thermal radiation. The system of governing equations is written in dimensionless non-primitive variables and solved by the finite difference method. The effect of surface emissivity on fluid flow and heat transfer has been studied.
Gepubliceerd in: 2021
Onderwerpen:
Online toegang:http://earchive.tpu.ru/handle/11683/68331
Formaat: Elektronisch Hoofdstuk
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=633374
Omschrijving
Samenvatting:Заглавие с экрана
An investigation of convective heat transfer under an effect of thermal radiation in a rotating cubic cavity has been carried out numerically. Vertical left wall is heated, vertical right wall is cooled, and other walls of the cavity are insulated. The cavity rotates at a constant angular velocity in counterclockwise direction relative to z-axis. The cavity is filled with a fluid satisfying the Boussinesq approximation. Fluid is Newtonian and incompressible and all physical parameters are not dependent on a temperature. All surfaces inside the cavity are reflectors and emitters of thermal radiation, while the medium is transparent to thermal radiation. The system of governing equations is written in dimensionless non-primitive variables and solved by the finite difference method. The effect of surface emissivity on fluid flow and heat transfer has been studied.