Comparative study of COVID and pulmonary fibrotic CT lung images using siamese networks with VGG16

Detalhes bibliográficos
Parent link:Молодежь и современные информационные технологии: сборник трудов XVIII Международной научно-практической конференции студентов, аспирантов и молодых учёных, 22-26 марта 2021 г., г. Томск/ Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники ; под ред. Н. Г. Маркова [и др.]. [С. 99-101].— , 2021
Autor principal: Aksenov S. V. Sergey Vladimirovich
Autor Corporativo: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Outros Autores: Samuel Ragland Francis N. J. Natzina Juanita, Samuel Ragland Francis N. S. Nadine Susanne
Resumo:Заглавие с титульного экрана
In this research an algorithm is proposed to produce comparative results between Pulmonary Fibrosis of the lungs and COVID computer tomography lung images for the purpose of research to aid in the field of medical science. The Siamese Network which is based on parallel tandem operation to produce comparative results, is altered by changing or altering the implementation function using the VGG16 neural network. The input data set in the method uses a variation of healthy lung CT images along with CT images of cases with pulmonary fibrosis and COVID. The main aim is to produce a comparative study on the textural variation of the CT images under study to further enhance research outputs in the future with accuracy and less time consumption.
Publicado em: 2021
Colecção:Искусственный интеллект и машинное обучение
Assuntos:
Acesso em linha:http://earchive.tpu.ru/handle/11683/68022
Formato: Recurso Electrónico Capítulo de Livro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=633162
Descrição
Resumo:Заглавие с титульного экрана
In this research an algorithm is proposed to produce comparative results between Pulmonary Fibrosis of the lungs and COVID computer tomography lung images for the purpose of research to aid in the field of medical science. The Siamese Network which is based on parallel tandem operation to produce comparative results, is altered by changing or altering the implementation function using the VGG16 neural network. The input data set in the method uses a variation of healthy lung CT images along with CT images of cases with pulmonary fibrosis and COVID. The main aim is to produce a comparative study on the textural variation of the CT images under study to further enhance research outputs in the future with accuracy and less time consumption.