Типизация компьютерного представления математических моделей "вход-состояние-выход" линейных стационарных динамических систем и ее практическое использование

Bibliographic Details
Parent link:Современные технологии, экономика и образование: сборник материалов II Всероссийской научно-методической конференции, г. Томск, 2-4 сентября 2020 г./ Национальный исследовательский Томский политехнический университет ; под ред. А. Г. Фефеловой, Е. А. Покровской, И. О. Болотиной [и др.]. [С. 239-242].— , 2020
Main Author: Малышенко А. М. Александр Максимович
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение автоматизации и робототехники
Summary:Заглавие с титульного экрана
In scientific practice, to study the properties of linear stationary dynamic systems prefer to use their typed mathematical models, including models of the type "nput-stateoutput"(ISO-models). The author of the report proposes to use a model view for storage and use in computers. This view includes two characterizing matrix models - the parameters matrix and the matrix of size its vectors. This ensures that systems are consistent with entry, state, and exit vectors of any order. The report points to the possibility of using this description for individual subsystems of LSD-systems and the subsequent formalized output of the ISO-model of the system as a whole.
Published: 2020
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/64715
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=632675
Description
Summary:Заглавие с титульного экрана
In scientific practice, to study the properties of linear stationary dynamic systems prefer to use their typed mathematical models, including models of the type "nput-stateoutput"(ISO-models). The author of the report proposes to use a model view for storage and use in computers. This view includes two characterizing matrix models - the parameters matrix and the matrix of size its vectors. This ensures that systems are consistent with entry, state, and exit vectors of any order. The report points to the possibility of using this description for individual subsystems of LSD-systems and the subsequent formalized output of the ISO-model of the system as a whole.