Аннотирование объектов на медицинских изображениях рентгенографии грудной клетки с применением нейронных сетей
| Parent link: | Современные технологии, экономика и образование.— 2020.— [С. 235-238] |
|---|---|
| প্রধান লেখক: | |
| সংস্থা লেখক: | |
| অন্যান্য লেখক: | |
| সংক্ষিপ্ত: | Заглавие с титульного экрана Misinterpretation of X-ray images can lead to a worsening of the patient's condition. The purpose of this research was to develop an algorithm for automatic annotation of diseases on the X-ray image in order to improve the accuracy of the analysis of medical images. This paper considers various methods for solving the classification problem. During the research a database of annotated medical images of radiography was compiled. On this basis, a compactly connected convolutional neural network was trained and tested. The classification accuracy of developed algorithm is above 66% for 14 classes of diseases. |
| ভাষা: | রুশ |
| প্রকাশিত: |
2020
|
| বিষয়গুলি: | |
| অনলাইন ব্যবহার করুন: | http://earchive.tpu.ru/handle/11683/64713 |
| বিন্যাস: | বৈদ্যুতিক গ্রন্থের অধ্যায় |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=632673 |
| সংক্ষিপ্ত: | Заглавие с титульного экрана Misinterpretation of X-ray images can lead to a worsening of the patient's condition. The purpose of this research was to develop an algorithm for automatic annotation of diseases on the X-ray image in order to improve the accuracy of the analysis of medical images. This paper considers various methods for solving the classification problem. During the research a database of annotated medical images of radiography was compiled. On this basis, a compactly connected convolutional neural network was trained and tested. The classification accuracy of developed algorithm is above 66% for 14 classes of diseases. |
|---|