Аннотирование объектов на медицинских изображениях рентгенографии грудной клетки с применением нейронных сетей

গ্রন্থ-পঞ্জীর বিবরন
Parent link:Современные технологии, экономика и образование.— 2020.— [С. 235-238]
প্রধান লেখক: Башлыков А. А.
সংস্থা লেখক: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
অন্যান্য লেখক: Спицын В. Г. Владимир Григорьевич
সংক্ষিপ্ত:Заглавие с титульного экрана
Misinterpretation of X-ray images can lead to a worsening of the patient's condition. The purpose of this research was to develop an algorithm for automatic annotation of diseases on the X-ray image in order to improve the accuracy of the analysis of medical images. This paper considers various methods for solving the classification problem. During the research a database of annotated medical images of radiography was compiled. On this basis, a compactly connected convolutional neural network was trained and tested. The classification accuracy of developed algorithm is above 66% for 14 classes of diseases.
ভাষা:রুশ
প্রকাশিত: 2020
বিষয়গুলি:
অনলাইন ব্যবহার করুন:http://earchive.tpu.ru/handle/11683/64713
বিন্যাস: বৈদ্যুতিক গ্রন্থের অধ্যায়
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=632673
বিবরন
সংক্ষিপ্ত:Заглавие с титульного экрана
Misinterpretation of X-ray images can lead to a worsening of the patient's condition. The purpose of this research was to develop an algorithm for automatic annotation of diseases on the X-ray image in order to improve the accuracy of the analysis of medical images. This paper considers various methods for solving the classification problem. During the research a database of annotated medical images of radiography was compiled. On this basis, a compactly connected convolutional neural network was trained and tested. The classification accuracy of developed algorithm is above 66% for 14 classes of diseases.