Использование иммунного и генетического алгоритмов для оптимизации обучения нейронной сети

Detalles Bibliográficos
Parent link:Информационные технологии в науке, управлении, социальной сфере и медицине: сборник научных трудов II Международной конференции, 19-22 мая 2015 г., Томск/ Национальный исследовательский Томский политехнический университет (ТПУ) ; ред. кол. О. Г. Берестнева [и др.]. [С. 859-861].— , 2015
Autor Principal: Голенков В. В.
Autor Corporativo: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра прикладной математики (ПМ)
Outros autores: Гергет О. М. Ольга Михайловна
Summary:Заглавие с титульного экрана
Nowadays, computer technologies are widely implemented and used in all areas of human activity, including in medicine. They can significantly improve the quality of healthcare by modeling a pathological process in a particular disease. A neural network can be trained to determine diseases, but training may take a long time because of the large number of indicators of human health, as well as increased demands on the accuracy of recognition. Training time can be reduced by using optimization algorithms presented in this article.
Publicado: 2015
Series:Математические методы и информационные технологии в психологии и медицине
Subjects:
Acceso en liña:http://earchive.tpu.ru/handle/11683/17292
http://www.lib.tpu.ru/fulltext/c/2015/C24/378.pdf
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=614095
Descripción
Summary:Заглавие с титульного экрана
Nowadays, computer technologies are widely implemented and used in all areas of human activity, including in medicine. They can significantly improve the quality of healthcare by modeling a pathological process in a particular disease. A neural network can be trained to determine diseases, but training may take a long time because of the large number of indicators of human health, as well as increased demands on the accuracy of recognition. Training time can be reduced by using optimization algorithms presented in this article.