Асимптотики и невязка уравнения Фишера-Колмогорова-Петровского-Пискунова с аномальной диффузией
| Parent link: | Перспективы развития фундаментальных наук=Prospects of fundamental sciences development: сборник научных трудов XII Международной конференция студентов и молодых ученых, г. Томск, 21-24 апреля 2015 г./ Национальный исследовательский Томский политехнический университет (ТПУ) ; Национальный исследовательский Томский государственный университет (ТГУ) ; Томский государственный архитектурно-строительный университет (ТГАСУ) ; Томский государственный университет систем управления и радиоэлектроники (ТУСУР) ; ред. кол. И. А. Курзина ; Г. А. Воронова ; С. А. Поробова. [С. 704-706].— , 2015 |
|---|---|
| Main Author: | |
| Corporate Author: | |
| Other Authors: | , |
| Summary: | Заглавие с экрана Asymptotic solutions to the nonlocal one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation with fractional derivatives in the diffusion operator are constructed. Fractional derivative is determined in accordance with the Weil, Grunwald-Letnikov and Liouville approaches. Asymptotic solutions in a class of functions that are perturbations of a quasi-steady-state exact solution are found. The asymptotics constructed tend to this quasi-steady-state solution at large times. It is shown that the fractional derivatives lead to drift of the mass center of the system and break the symmetry of the initial distribution. |
| Language: | Russian |
| Published: |
2015
|
| Series: | Математика |
| Subjects: | |
| Online Access: | http://earchive.tpu.ru/handle/11683/19026 http://www.lib.tpu.ru/fulltext/c/2015/C21/221.pdf |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=613093 |
| Physical Description: | 1 файл(400 Кб) |
|---|---|
| Summary: | Заглавие с экрана Asymptotic solutions to the nonlocal one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation with fractional derivatives in the diffusion operator are constructed. Fractional derivative is determined in accordance with the Weil, Grunwald-Letnikov and Liouville approaches. Asymptotic solutions in a class of functions that are perturbations of a quasi-steady-state exact solution are found. The asymptotics constructed tend to this quasi-steady-state solution at large times. It is shown that the fractional derivatives lead to drift of the mass center of the system and break the symmetry of the initial distribution. |