Математическое моделирование обработки потоком частиц деформируемого металла с учетом перекресных эффектов
| Parent link: | Перспективы развития фундаментальных наук.— 2013.— [С. 635-637] |
|---|---|
| Autore principale: | |
| Ente Autore: | |
| Altri autori: | |
| Riassunto: | Заглавие с экрана The problem on material treatment by particle beam for non isothermal conditions is solved analytically. The thermal diffusion and the heat transfer under concentration gradient are taken into account. The stress and strain evaluation in the treatment zone was carried out used the methods of thermal elasticity theory (for elastic body) and analogy method in the space of Laplace's integral transform (for viscoelastic body). It was shown that the thermal diffusion is the most essential for the body with small viscous. |
| Lingua: | russo |
| Pubblicazione: |
2013
|
| Serie: | Математика |
| Soggetti: | |
| Accesso online: | http://www.lib.tpu.ru/fulltext/c/2013/C21/214.pdf |
| Natura: | Elettronico Capitolo di libro |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=603898 |
| Descrizione fisica: | 1 файл(463 Кб) |
|---|---|
| Riassunto: | Заглавие с экрана The problem on material treatment by particle beam for non isothermal conditions is solved analytically. The thermal diffusion and the heat transfer under concentration gradient are taken into account. The stress and strain evaluation in the treatment zone was carried out used the methods of thermal elasticity theory (for elastic body) and analogy method in the space of Laplace's integral transform (for viscoelastic body). It was shown that the thermal diffusion is the most essential for the body with small viscous. |