Fractal dimension as a characteristic of deformation stages of austenite stainless steel under tensile load

Bibliografske podrobnosti
Parent link:Theoretical and Applied Fracture Mechanics
Vol. 35, iss. 2, March-Apr..— 2001.— P. 171-177
Glavni avtor: Kuznetsov P. V.
Drugi avtorji: Panin V. E. Viktor Evgenyevich, Schreiber J.
Izvleček:A technique for defining the fractal dimension of the deformed specimen is considered by using surface relief images obtained from a scanning electron microscope. By subjecting the austenitic stainless steel specimen to a step-wise increase in load, the fractal dimension is observed. Surface mesostructure could be characterized by discrete fractal dimension. The spectrum of the fractal data agrees with the self-affinity function calculated from the universal material constant. A correlation is established between the step-wise increase in the fractal dimension and the specific energies dissipated in the deformed specimen
В фонде НТБ ТПУ отсутствует
Jezik:angleščina
Izdano: 2001
Teme:
Format: Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=597641

MARC

LEADER 00000naa0a2200000 4500
001 597641
005 20250210090820.0
035 |a (RuTPU)RU\TPU\tpu\20980 
090 |a 597641 
100 |a 20120409d2001 k||y0rusy50 ba 
101 0 |a eng 
200 1 |a Fractal dimension as a characteristic of deformation stages of austenite stainless steel under tensile load  |f  P. V. Kuznetsov, V. E. Panin, J. Schreiber 
330 |a A technique for defining the fractal dimension of the deformed specimen is considered by using surface relief images obtained from a scanning electron microscope. By subjecting the austenitic stainless steel specimen to a step-wise increase in load, the fractal dimension is observed. Surface mesostructure could be characterized by discrete fractal dimension. The spectrum of the fractal data agrees with the self-affinity function calculated from the universal material constant. A correlation is established between the step-wise increase in the fractal dimension and the specific energies dissipated in the deformed specimen 
333 |a В фонде НТБ ТПУ отсутствует 
461 |t Theoretical and Applied Fracture Mechanics 
463 |t Vol. 35, iss. 2, March-Apr.  |v P. 171-177  |d 2001 
610 1 |a труды учёных ТПУ 
700 1 |a Kuznetsov  |b P. V. 
701 1 |a Panin  |b V. E.  |c Director of Russian materials science center  |c Research advisor of Institute of strength physics and materials science of Siberian branch of Russian Academy of Sciences  |f 1930-  |g Viktor Evgenyevich  |3 (RuTPU)RU\TPU\pers\26443 
701 1 |a Schreiber  |b J. 
801 1 |a RU  |b 63413507  |c 20120409 
801 2 |a RU  |b 63413507  |c 20120424  |g RCR 
942 |c CR