Термодинамический анализ процесса алкилирования бензола пропиленом

Bibliographische Detailangaben
Parent link:Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов/ Национальный исследовательский Томский политехнический университет (ТПУ).— , 2015-.— 2413-1830
Т. 326, № 7.— 2015.— [С. 121-129]
Körperschaft: Национальный исследовательский Томский политехнический университет (ТПУ) Институт природных ресурсов (ИПР) Кафедра химической технологии топлива и химической кибернетики (ХТТ)
Weitere Verfasser: Чудинова А. А. Алена Анатольевна, Нурмаканова А. Е. Асем Еслямбековна, Салищева А. А. Анастасия Александровна, Ивашкина Е. Н. Елена Николаевна
Zusammenfassung:Заглавие с титульного листа
Электронная версия печатной публикации
Актуальность работы обусловлена широким применением процессов алкилирования в промышленности и необходимостью создания адекватной по своей прогнозирующей способности математической модели, пригодной для решения технологических задач производства изопропилбензола в присутствии хлорида алюминия. Цель работы: определение и исследование термодинамических и кинетических закономерностей процесса алкилирования бензола пропиленом в присутствии хлорида алюминия с использованием методов квантовой химии. Методы исследования: электронно-структурный метод, основанный на теории функционала плотности (ТФП, DFT) на уровне B3LYP. Поиск переходных состояний реакций в присутствии кислот Льюиса был выполнен методом QST2 на уровне B3LYP/6-31++G(d,p) и LSDA/6-31++G(d,p). Результаты. Определенные с использованием методов квантовой химии термодинамические параметры основных реакций, протекающих в процессе получения кумола, позволили выполнить сравнение двух конкурирующих реакций - алкилирования и трансалкилирования. В результате было определено, что первая реакция обладает наименьшей энергией активации (для реакции алкилирования бензола пропиленом 150,94 кДж/моль при значении предэкспоненциального множителя в уравнении Аррениуса 1,58×105 , для реакции трансалкилирования энергия активации и предэкспоненциальный множитель в уравнении Аррениуса равны 156,13 кДж/моль и 5,34×104 , соответственно). Установленные закономерности легли в основу математической модели процесса алкилирования, которая позволяет прогнозировать качество получаемого алкилата в зависимости от режима проведения процесса в реакторе алкилирования. Погрешность расчетов по модели таких показателей, как выход целевого продукта изопропилбензола и побочных компонентов, определяющих качество продукта (н-пропилбензола, этилбензола, полиалкилбензолов), не превышает 7-10 %.
Relevance of the research is caused by broad application of alkylation in industry and the necessity to develop a mathematical model adequate on the predicting ability and suitable for solving the technological problems in producing cumene with aluminum chloride. The main aim of the study is to define and to study the thermodynamic and kinetic regularities of benzene alkylation with propylene in the presence of aluminum chloride applying the methods of quantum chemistry. The methods used in the study: electronic-structural method based on density functional theory (DFT, DFT) at B3LYP. Search for transition state of the reaction in the presence of Lewis acids was performed by QST2 at B3LYP / 6-31 ++ G(d,p) and LSDA / 6-31 ++ G(d,p). The results. The thermodynamic parameters of the main reactions, defined by the methods of quantum chemistry, proceeding in the course of obtaining cumene, allowed comparing two competing reactions - alkylation and transalkylation. As a result it was ascertained that the first reaction possesses the lowest activation energy (for benzene alkylation with propylene it is 150,94 kJ/mol at preexponential multiplier value in Arrhenius's 1,58×105 equation, for transalkylation reaction the activation energy and a preexponential multiplier in Arrhenius's equation equal 156,13 kJ/mol and 5,34×104 , respectively). The regularities determined became the basis of the mathematical model of the alkylation process that allows predicting the quality of the alkylate depending on the process mode in the alkylation reactor. Accuracy of calculations by the model of such indicators as the yield of main and secondary components that determine the quality of the product (n-propylbenzene, ethylbenzene, polyalkilbenzenes) does not exceed 7-10 %.
Sprache:Russisch
Veröffentlicht: 2015
Schlagworte:
Online-Zugang:http://earchive.tpu.ru/bitstream/11683/5527/1/bulletin_tpu-2015-326-7-14.pdf
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=301486

MARC

LEADER 00000nla2a2200000 4500
001 301486
005 20241211063201.0
035 |a (RuTPU)RU\TPU\book\326658 
035 |a RU\TPU\book\326550 
090 |a 301486 
100 |a 20150731d2015 k y0rusy50 ca 
101 0 |a rus 
102 |a RU 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Термодинамический анализ процесса алкилирования бензола пропиленом  |f А. А. Чудинова [и др.] 
203 |a Текст  |c электронный 
215 |a 1 файл (245 Kb) 
300 |a Заглавие с титульного листа 
300 |a Электронная версия печатной публикации 
320 |a [Библиогр.: с. 127 (20 назв.)] 
330 |a Актуальность работы обусловлена широким применением процессов алкилирования в промышленности и необходимостью создания адекватной по своей прогнозирующей способности математической модели, пригодной для решения технологических задач производства изопропилбензола в присутствии хлорида алюминия. Цель работы: определение и исследование термодинамических и кинетических закономерностей процесса алкилирования бензола пропиленом в присутствии хлорида алюминия с использованием методов квантовой химии. Методы исследования: электронно-структурный метод, основанный на теории функционала плотности (ТФП, DFT) на уровне B3LYP. Поиск переходных состояний реакций в присутствии кислот Льюиса был выполнен методом QST2 на уровне B3LYP/6-31++G(d,p) и LSDA/6-31++G(d,p). Результаты. Определенные с использованием методов квантовой химии термодинамические параметры основных реакций, протекающих в процессе получения кумола, позволили выполнить сравнение двух конкурирующих реакций - алкилирования и трансалкилирования. В результате было определено, что первая реакция обладает наименьшей энергией активации (для реакции алкилирования бензола пропиленом 150,94 кДж/моль при значении предэкспоненциального множителя в уравнении Аррениуса 1,58×105 , для реакции трансалкилирования энергия активации и предэкспоненциальный множитель в уравнении Аррениуса равны 156,13 кДж/моль и 5,34×104 , соответственно). Установленные закономерности легли в основу математической модели процесса алкилирования, которая позволяет прогнозировать качество получаемого алкилата в зависимости от режима проведения процесса в реакторе алкилирования. Погрешность расчетов по модели таких показателей, как выход целевого продукта изопропилбензола и побочных компонентов, определяющих качество продукта (н-пропилбензола, этилбензола, полиалкилбензолов), не превышает 7-10 %. 
330 |a Relevance of the research is caused by broad application of alkylation in industry and the necessity to develop a mathematical model adequate on the predicting ability and suitable for solving the technological problems in producing cumene with aluminum chloride. The main aim of the study is to define and to study the thermodynamic and kinetic regularities of benzene alkylation with propylene in the presence of aluminum chloride applying the methods of quantum chemistry. The methods used in the study: electronic-structural method based on density functional theory (DFT, DFT) at B3LYP. Search for transition state of the reaction in the presence of Lewis acids was performed by QST2 at B3LYP / 6-31 ++ G(d,p) and LSDA / 6-31 ++ G(d,p). The results. The thermodynamic parameters of the main reactions, defined by the methods of quantum chemistry, proceeding in the course of obtaining cumene, allowed comparing two competing reactions - alkylation and transalkylation. As a result it was ascertained that the first reaction possesses the lowest activation energy (for benzene alkylation with propylene it is 150,94 kJ/mol at preexponential multiplier value in Arrhenius's 1,58×105 equation, for transalkylation reaction the activation energy and a preexponential multiplier in Arrhenius's equation equal 156,13 kJ/mol and 5,34×104 , respectively). The regularities determined became the basis of the mathematical model of the alkylation process that allows predicting the quality of the alkylate depending on the process mode in the alkylation reactor. Accuracy of calculations by the model of such indicators as the yield of main and secondary components that determine the quality of the product (n-propylbenzene, ethylbenzene, polyalkilbenzenes) does not exceed 7-10 %. 
337 |a Adobe Reader 
453 |t Thermodynamic analysis of benzene alkylation with propylene  |o translation from Russian  |f A. A. Chudinova [et al.]  |c Tomsk  |n TPU Press  |d 2015  |d 2015 
453 |t Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering 
453 |t Vol. 326, № 7 
461 1 |0 (RuTPU)RU\TPU\book\312844  |x 2413-1830  |t Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов  |f Национальный исследовательский Томский политехнический университет (ТПУ)  |d 2015-  
463 1 |0 (RuTPU)RU\TPU\book\326499  |t Т. 326, № 7  |v [С. 121-129]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a бензол 
610 1 |a пропилен 
610 1 |a изопропилбензол 
610 1 |a переходное состояние 
610 1 |a энергетический профиль реакции 
610 |a benzene 
610 |a propylene 
610 |a cumene 
610 |a transition state 
610 |a energy profile of reaction 
701 1 |a Чудинова  |b А. А.  |g Алена Анатольевна 
701 1 |a Нурмаканова  |b А. Е.  |g Асем Еслямбековна 
701 1 |a Салищева  |b А. А.  |g Анастасия Александровна 
701 1 |a Ивашкина  |b Е. Н.  |c химик-технолог  |c профессор Томского политехнического университета, доктор технических наук  |f 1983-  |g Елена Николаевна  |y Томск  |3 (RuTPU)RU\TPU\pers\24965  |9 11119 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра химической технологии топлива и химической кибернетики (ХТТ)  |3 (RuTPU)RU\TPU\col\18665 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра химической технологии топлива и химической кибернетики (ХТТ)  |3 (RuTPU)RU\TPU\col\18665 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра химической технологии топлива и химической кибернетики (ХТТ)  |3 (RuTPU)RU\TPU\col\18665 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра химической технологии топлива и химической кибернетики (ХТТ)  |3 (RuTPU)RU\TPU\col\18665 
801 2 |a RU  |b 63413507  |c 20190520  |g PSBO 
856 4 |u http://earchive.tpu.ru/bitstream/11683/5527/1/bulletin_tpu-2015-326-7-14.pdf 
942 |c CF