Т. 1
| Parent link: | Аналитическая теория дифференциальных уравнений: монография/ Ю. С. Ильяшенко, С. Ю. Яковенко. Т. 1.— , 2013-.— 978-5-4439-0214-2 |
|---|---|
| Sumari: | Предлагаемая книга — первый том двухтомной монографии, посвященной аналитической теории дифференциальных уравнений.В первой части этого тома излагается формальная и аналитическая теория нормальных форм и теорема о разрешении особенностей для векторных полей на плоскости.Вторая часть посвящена алгебраически разрешимым локальным задачам теории аналитических дифференциальных уравнений, квадратичным векторным полям и проблеме локальной классификации ростков векторных полей в комплексной области. Дано современное изложение работы Дюлака (1908) об условиях центра и классической работы Баутина о рождении не более чем трех предельных циклов при бифуркации особой точки квадратичного векторного поля типа центр. Изложена теория алгебраически разрешимых локальных задач и доказана алгебраическая неразрешимость проблемы различения центра и фокуса.В третьей части изложена линейная теория: подход Арнольда к теории нормальных форм линейных систем с нелинейной точки зрения, проблема Римана — Гильберта, явление Стокса, теорема Сибуи о секториальной нормализации.В приложениях приводится необходимый минимум сведений из теории рима-новых поверхностей и многомерного комплексного анализа.Книга предназначена для студентов, аспирантов и научных работников физико-математических специальностей. |
| Publicat: |
2013
|
| Matèries: | |
| Format: | Llibre |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=284109 |
| Descripció física: | 428 с. ил. |
|---|---|
| Sumari: | Предлагаемая книга — первый том двухтомной монографии, посвященной аналитической теории дифференциальных уравнений.В первой части этого тома излагается формальная и аналитическая теория нормальных форм и теорема о разрешении особенностей для векторных полей на плоскости.Вторая часть посвящена алгебраически разрешимым локальным задачам теории аналитических дифференциальных уравнений, квадратичным векторным полям и проблеме локальной классификации ростков векторных полей в комплексной области. Дано современное изложение работы Дюлака (1908) об условиях центра и классической работы Баутина о рождении не более чем трех предельных циклов при бифуркации особой точки квадратичного векторного поля типа центр. Изложена теория алгебраически разрешимых локальных задач и доказана алгебраическая неразрешимость проблемы различения центра и фокуса.В третьей части изложена линейная теория: подход Арнольда к теории нормальных форм линейных систем с нелинейной точки зрения, проблема Римана — Гильберта, явление Стокса, теорема Сибуи о секториальной нормализации.В приложениях приводится необходимый минимум сведений из теории рима-новых поверхностей и многомерного комплексного анализа.Книга предназначена для студентов, аспирантов и научных работников физико-математических специальностей. |
| ISBN: | 9785443902302 |