Топологическая сопряженность псевдоаносовских гомеоморфизмов, монография

Podrobná bibliografie
Hlavní autor: Жиров А. Ю. Алексей Юрьевич
Shrnutí:Книга посвящена задаче о топологической сопряжённости отображений. В монографии приводится её алгоритмическое решение для обобщённых псевдоаносовских гомеоморфизмов как ориентируемых, так и неориентируемых поверхностей. Это решение основано на рассмотрении марковских разбиений некоторого специального вида (ленточные разбиения) и на их описании посредством конечного набора данных (кода). Описывается универсальный способ построения обобщённого псевдоаносовского гомеоморфизма. В качестве следствия рассматривается задача об алгоритмическом перечислении обобщённых псевдоаносовских гомеоморфизмов и строятся их примеры с заданными геометрическими и динамическими характеристиками. Изложение сопровождается примерами, иллюстрирующими все рассматриваемые конструкции и алгоритмы.
Vydáno: Москва, МЦНМО, 2013
Témata:
Médium: Kniha
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=283437
Popis
Fyzický popis:366 с. ил.
Shrnutí:Книга посвящена задаче о топологической сопряжённости отображений. В монографии приводится её алгоритмическое решение для обобщённых псевдоаносовских гомеоморфизмов как ориентируемых, так и неориентируемых поверхностей. Это решение основано на рассмотрении марковских разбиений некоторого специального вида (ленточные разбиения) и на их описании посредством конечного набора данных (кода). Описывается универсальный способ построения обобщённого псевдоаносовского гомеоморфизма. В качестве следствия рассматривается задача об алгоритмическом перечислении обобщённых псевдоаносовских гомеоморфизмов и строятся их примеры с заданными геометрическими и динамическими характеристиками. Изложение сопровождается примерами, иллюстрирующими все рассматриваемые конструкции и алгоритмы.
ISBN:9785443902135