Интерференционные измерения динамики температуры в твердотельных акустооптических модуляторах

Bibliographic Details
Parent link:Известия Томского политехнического университета [Известия ТПУ]/ Томский политехнический университет (ТПУ).— , 2000-
Т. 325, № 2 : Математика, физика и механика.— 2014.— [С. 137-142]
Main Author: Белоусов А. П. Андрей Петрович
Corporate Author: Новосибирский государственный технический университет (НГТУ)
Other Authors: Белоусов П. Я. Петр Яковлевич, Борыняк Л. А. Леонид Александрович
Summary:Заглавие с титульного листа
Электронная версия печатной публикации
Актуальность работы обусловлена необходимостью эффективного использования твердотельных акустооптических модуляторов в широком диапазоне технических устройств, таких как дефлекторы, устройства смещения частоты и развертки, делители оптических пучков, лазерные доплеровские анемометры и многих других. Цель работы: изучение температурной динамики твердотельных акустооптических модуляторов бесконтактными оптическими методами. Обоснование использования коммутационных режимов работы акустооптических модуляторов в технических устройствах. Определение диапазона применимости и возможных погрешностей при эксплуатации. Методы исследования: измерение сдвига фазы световой волны, обусловленного тепловым изменением оптической плотности и геометрических параметров рабочей области твердотельного акустооптического модулятора. Оценка интегрального изменения температуры в зависимости от времени и положения зондирующего пучка в звукопроводе. Реализуется двухлучевая схема интерферометра. Излучение гелий-неонового лазера с длиной волны λ=632,8 нм мощностью 0,5 мВт разбивается на два пучка светоделительным кубиком. В один из пучков помещается акустооптический модулятор. Сдвиг фаз, вызванный изменением оптической плотности и геометрических параметров исследуемого объекта, фиксируется по смещению интерференционных полос. Методы анализа изображений, интерферометрии, фотометрии, акустооптики, материаловедения, когерентной оптики, лазерной физики.
Результаты: измерен сдвиг фазы световой волны, обусловленный изменением оптической плотности и толщины объекта. Проведена оценка интегрального изменения температуры в зависимости от времени и положения зондирующего пучка в звукопроводе твердотельного акустооптического модулятора. Определено время выхода устройства на стационарный режим. Результаты исследования показали, что максимальная величина погрешности измерения скорости потоков с низкой частотой следования светорассеивающих трассеров при использовании коммутационного режима работы твердотельного модулятора в лазерных доплеровских анемометрах будет равняться 0,5 %. Повышение точности может быть достигнуто путем применения корректирующих алгоритмов.
The relevance of the work is determined by the necessity of solid-state acoustooptical modulators effective using in a wide range of technical devices such as deflectors, frequency shift setups, sweeping tools, optical beam splitters, laser Doppler anemometers et cetera. The main aim of the study: investigation of temperature dynamics in solid-state acoustooptical modulators by non-invasive optical methods; substantiation of solid-state acoustooptical modulators switching mode using in devices; estimation of applicability range and possible operating biases. The methods used in the study: measurement of light wave phase shift induced by solid-state acoustooptical modulator active area geometrical characteristics and optical density thermal alterations. Estimation of temperature integral changing depending on time and interrogation beam location in acoustic transmission duct. A two-beam interferometer was used. Helium-neon laser emission with wavelength λ=632,8 nm and power 0,5 mW was divided into two rays by beam splitting cube. The acoustooptical modulator was placed in one of the beams. A phase shift produced by geometric parameters of investigated object and optical density changings was determined by interference fringe shift. Methods of image analysis, interferometry, photometry, acoustooptics, material science, coherent optics, laser physics. The results: The authors have measured the light wave phase shift caused by alterations of optical density and object thickness. Temperature integral change was estimated depending on time and probing beam location in acoustic transmission duct of acoustooptical modulator. The warm-up period of optical modulator was defined. The findings revealed that measuring maximal error magnitude of flow velocity with low event's frequency of light-diffusing tracers for solid-state acoustooptical modulator switching mode would equal 0,5 %. The measurement accuracy can be increased by usage of error correction algorithms.
Language:Russian
Published: 2014
Subjects:
Online Access:http://earchive.tpu.ru/bitstream/11683/5328/1/bulletin_tpu-2014-325-2-18.pdf
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=268249

MARC

LEADER 00000nla2a2200000 4500
001 268249
005 20231031224035.0
035 |a (RuTPU)RU\TPU\book\291381 
090 |a 268249 
100 |a 20140828d2014 k y0rusy50 ca 
101 0 |a rus 
102 |a RU 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Интерференционные измерения динамики температуры в твердотельных акустооптических модуляторах  |b Электронный ресурс  |f А. П. Белоусов, П. Я. Белоусов, Л. А. Борыняк 
203 |a Текст  |c электронный 
215 |a 1 файл (1.7 Mb) 
230 |a Электронные текстовые данные (1 файл : 1.7 Mb) 
300 |a Заглавие с титульного листа 
300 |a Электронная версия печатной публикации 
320 |a [Библиогр.: с. 140-141 (20 назв.)] 
330 |a Актуальность работы обусловлена необходимостью эффективного использования твердотельных акустооптических модуляторов в широком диапазоне технических устройств, таких как дефлекторы, устройства смещения частоты и развертки, делители оптических пучков, лазерные доплеровские анемометры и многих других. Цель работы: изучение температурной динамики твердотельных акустооптических модуляторов бесконтактными оптическими методами. Обоснование использования коммутационных режимов работы акустооптических модуляторов в технических устройствах. Определение диапазона применимости и возможных погрешностей при эксплуатации. Методы исследования: измерение сдвига фазы световой волны, обусловленного тепловым изменением оптической плотности и геометрических параметров рабочей области твердотельного акустооптического модулятора. Оценка интегрального изменения температуры в зависимости от времени и положения зондирующего пучка в звукопроводе. Реализуется двухлучевая схема интерферометра. Излучение гелий-неонового лазера с длиной волны λ=632,8 нм мощностью 0,5 мВт разбивается на два пучка светоделительным кубиком. В один из пучков помещается акустооптический модулятор. Сдвиг фаз, вызванный изменением оптической плотности и геометрических параметров исследуемого объекта, фиксируется по смещению интерференционных полос. Методы анализа изображений, интерферометрии, фотометрии, акустооптики, материаловедения, когерентной оптики, лазерной физики. 
330 |a Результаты: измерен сдвиг фазы световой волны, обусловленный изменением оптической плотности и толщины объекта. Проведена оценка интегрального изменения температуры в зависимости от времени и положения зондирующего пучка в звукопроводе твердотельного акустооптического модулятора. Определено время выхода устройства на стационарный режим. Результаты исследования показали, что максимальная величина погрешности измерения скорости потоков с низкой частотой следования светорассеивающих трассеров при использовании коммутационного режима работы твердотельного модулятора в лазерных доплеровских анемометрах будет равняться 0,5 %. Повышение точности может быть достигнуто путем применения корректирующих алгоритмов. 
330 |a The relevance of the work is determined by the necessity of solid-state acoustooptical modulators effective using in a wide range of technical devices such as deflectors, frequency shift setups, sweeping tools, optical beam splitters, laser Doppler anemometers et cetera. The main aim of the study: investigation of temperature dynamics in solid-state acoustooptical modulators by non-invasive optical methods; substantiation of solid-state acoustooptical modulators switching mode using in devices; estimation of applicability range and possible operating biases. The methods used in the study: measurement of light wave phase shift induced by solid-state acoustooptical modulator active area geometrical characteristics and optical density thermal alterations. Estimation of temperature integral changing depending on time and interrogation beam location in acoustic transmission duct. A two-beam interferometer was used. Helium-neon laser emission with wavelength λ=632,8 nm and power 0,5 mW was divided into two rays by beam splitting cube. The acoustooptical modulator was placed in one of the beams. A phase shift produced by geometric parameters of investigated object and optical density changings was determined by interference fringe shift. Methods of image analysis, interferometry, photometry, acoustooptics, material science, coherent optics, laser physics. The results: The authors have measured the light wave phase shift caused by alterations of optical density and object thickness. Temperature integral change was estimated depending on time and probing beam location in acoustic transmission duct of acoustooptical modulator. The warm-up period of optical modulator was defined. The findings revealed that measuring maximal error magnitude of flow velocity with low event's frequency of light-diffusing tracers for solid-state acoustooptical modulator switching mode would equal 0,5 %. The measurement accuracy can be increased by usage of error correction algorithms. 
337 |a Adobe Reader 
453 |t Temperature dynamics interference measuring in solid-state acoustooptical modulators  |o translation from Russian  |f A. P. Belousov, P. Ya. Belousov, L. A. Borynyak  |c Tomsk  |n TPU Press  |d 2014  |d 2014  |a Belousov, Andrey 
453 |t Bulletin of the Tomsk Polytechnic University 
453 |t Vol. 325, № 2 : Mathematics, Physics and Mechanics 
461 1 |0 (RuTPU)RU\TPU\book\176237  |t Известия Томского политехнического университета [Известия ТПУ]  |f Томский политехнический университет (ТПУ)  |d 2000- 
463 1 |0 (RuTPU)RU\TPU\book\291200  |x 1684-8519  |t Т. 325, № 2 : Математика, физика и механика  |v [С. 137-142]  |d 2014  |p 166 с. 
610 1 |a электронный ресурс 
610 1 |a твердотельные модуляторы 
610 1 |a акустооптические модуляторы 
610 1 |a интерферометрия 
610 1 |a дифракция 
610 1 |a акустические волны 
610 1 |a температурные градиенты 
610 1 |a лазерные доплеровские анемометры 
610 1 |a ультразвук 
610 1 |a коммутации 
610 1 |a стационарный режим 
610 1 |a стационарные режимы 
610 1 |a оптическая плотность 
610 1 |a температурные расширения 
610 1 |a сдвиги 
610 1 |a фазы 
610 |a solid-state acoustooptical modulator 
610 |a interferometry 
610 |a diffraction 
610 |a acoustical wave 
610 |a thermal gradient 
610 |a 3D laser Doppler velocimeter 
610 |a ultrasound 
610 |a switching mode 
610 |a stationary mode 
610 |a optical density 
610 |a thermal expansion 
610 |a phase shift 
700 1 |a Белоусов  |b А. П.  |g Андрей Петрович  |6 z01712 
701 1 |a Белоусов  |b П. Я.  |g Петр Яковлевич  |6 z02712 
701 1 |a Борыняк  |b Л. А.  |g Леонид Александрович  |6 z03712 
712 0 2 |a Новосибирский государственный технический университет (НГТУ)  |c (1992- )  |2 stltpush  |3 (RuTPU)RU\TPU\col\36  |6 z01700 
712 0 2 |a Новосибирский государственный технический университет (НГТУ)  |c (1992- )  |2 stltpush  |3 (RuTPU)RU\TPU\col\36  |6 z02701 
712 0 2 |a Новосибирский государственный технический университет (НГТУ)  |c (1992- )  |2 stltpush  |3 (RuTPU)RU\TPU\col\36  |6 z03701 
801 2 |a RU  |b 63413507  |c 20190517  |g PSBO 
856 4 |u http://earchive.tpu.ru/bitstream/11683/5328/1/bulletin_tpu-2014-325-2-18.pdf 
942 |c CF