Быстрое вычисление интеграла вероятностей с произвольной точностью
| Parent link: | Перспективы развития фундаментальных наук=Prospects of fundamental sciences development: сборник научных трудов IX Международной конференция студентов и молодых ученых, г. Томск, 24-27 апреля 2012 г./ Национальный исследовательский Томский политехнический университет (ТПУ) ; ред. коллегия Е. А. Вайтулевич ; Г. А. Лямина ; Г. А. Воронова ; М. П. Никитич ; А. М. Лидер ; Ю. Р. Цой ; М. Е. Семенов. [С. 557-559].— , 2012 |
|---|---|
| Main Author: | |
| Other Authors: | |
| Summary: | Заглавие с экрана The article compares the various approximations of the integral probabilities in the form of infinite series. We found order estimations of these series truncations, which are sufficient to achieve a given accuracy of approximation. An algorithm has been suggested for efficient computing of the probability integral with arbitrary precision. |
| Published: |
2012
|
| Series: | Математика |
| Subjects: | |
| Online Access: | http://www.lib.tpu.ru/fulltext/c/2012/C21/187.pdf |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=238586 |
| Physical Description: | 1 файл(622 Кб) |
|---|---|
| Summary: | Заглавие с экрана The article compares the various approximations of the integral probabilities in the form of infinite series. We found order estimations of these series truncations, which are sufficient to achieve a given accuracy of approximation. An algorithm has been suggested for efficient computing of the probability integral with arbitrary precision. |