Using neural nets for reducing gas concentrations by the data of trass gas analyzer at CO2-laser
| Parent link: | Bulletin of the Tomsk Polytechnic University/ Tomsk Polytechnic University (TPU).— , 2006-2007 Vol. 311, № 5.— 2007.— [P. 102-105] |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | |
| Zusammenfassung: | Заглавие с титульного листа Электронная версия печатной публикации Aspects of neutral network construction and its learning for increasing accuracy of gas concentration reduction by measuring data of CO2-laser trass gas analyzer have been considered. Accuracy of reducing atmospheric gas (Н2О, СО2 и О3) concentration by neural network method in comparison with traditionally used method of least square is given |
| Sprache: | Englisch |
| Veröffentlicht: |
2007
|
| Schriftenreihe: | Control, computer engineeringand information science |
| Schlagworte: | |
| Online-Zugang: | http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2007/v311eng/i5/22.pdf |
| Format: | Elektronisch Buchkapitel |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=183097 |
| Beschreibung: | 1 файл (321 Кб) |
|---|---|
| Zusammenfassung: | Заглавие с титульного листа Электронная версия печатной публикации Aspects of neutral network construction and its learning for increasing accuracy of gas concentration reduction by measuring data of CO2-laser trass gas analyzer have been considered. Accuracy of reducing atmospheric gas (Н2О, СО2 и О3) concentration by neural network method in comparison with traditionally used method of least square is given |