Using neural nets for reducing gas concentrations by the data of trass gas analyzer at CO2-laser

Bibliographische Detailangaben
Parent link:Bulletin of the Tomsk Polytechnic University/ Tomsk Polytechnic University (TPU).— , 2006-2007
Vol. 311, № 5.— 2007.— [P. 102-105]
1. Verfasser: Kataev M. Yu.
Weitere Verfasser: Sukhanov A. Ya.
Zusammenfassung:Заглавие с титульного листа
Электронная версия печатной публикации
Aspects of neutral network construction and its learning for increasing accuracy of gas concentration reduction by measuring data of CO2-laser trass gas analyzer have been considered. Accuracy of reducing atmospheric gas (Н2О, СО2 и О3) concentration by neural network method in comparison with traditionally used method of least square is given
Sprache:Englisch
Veröffentlicht: 2007
Schriftenreihe:Control, computer engineeringand information science
Schlagworte:
Online-Zugang:http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2007/v311eng/i5/22.pdf
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=183097
Beschreibung
Beschreibung:1 файл (321 Кб)
Zusammenfassung:Заглавие с титульного листа
Электронная версия печатной публикации
Aspects of neutral network construction and its learning for increasing accuracy of gas concentration reduction by measuring data of CO2-laser trass gas analyzer have been considered. Accuracy of reducing atmospheric gas (Н2О, СО2 и О3) concentration by neural network method in comparison with traditionally used method of least square is given