Theories of "small" and "large" curvature of bars in total mathematical formulation

Bibliographic Details
Parent link:Bulletin of the Tomsk Polytechnic University/ Tomsk Polytechnic University (TPU).— , 2006-2007
Vol. 310, № 2.— 2007.— [P. 52-56]
Main Author: Anfilofiev А. V.
Summary:Заглавие с титульного листа
Электронная версия печатной публикации
The theories of «small» и «large» displacements at rod crooking have been analysed with estimation and determination of assumption functions separating them. General mathematical maintenance on the basis of line curvature expressions in the parametric form is developed. Boundary value problem of rod curvature geometry is presented in two problems: «line reestablishment» by the curvature function and the initial conditions, then «line flattering» i.e. determination of curve arc length by the final conditions.
Published: 2007
Series:Mathematics and mechanics. Physics
Subjects:
Online Access:http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2007/v310eng/i2/11.pdf
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=181730
Description
Physical Description:1 файл (325 Кб)
Summary:Заглавие с титульного листа
Электронная версия печатной публикации
The theories of «small» и «large» displacements at rod crooking have been analysed with estimation and determination of assumption functions separating them. General mathematical maintenance on the basis of line curvature expressions in the parametric form is developed. Boundary value problem of rod curvature geometry is presented in two problems: «line reestablishment» by the curvature function and the initial conditions, then «line flattering» i.e. determination of curve arc length by the final conditions.