Simulation of injection and capture of beam electrons in small-size betatrons by the method of macroparticles

Dades bibliogràfiques
Parent link:Bulletin of the Tomsk Polytechnic University/ Tomsk Polytechnic University (TPU).— , 2006-2007
Vol. 310, № 1.— 2007.— [P. 61-64]
Autor principal: Grigoriev V. P.
Altres autors: Ofitserov V. V., Semeshov V. А.
Sumari:Заглавие с титульного листа
Электронная версия печатной публикации
The simulation problem of self-consistent dynamics of electron beam in small-size betatrons has been considered. The description of numerical model developed on the basis of macroparticle method is presented. The results of process modelling of electron injection and capture on the acceleration mode in betatrons with axially-symmetrical and asymmetrical magnetic field are shown. Optimal input injection parameters by beam current and energy (20...40 keV and 0,1...1,0 А) providing the maximum number of the capture electrons are defined. The techniques of increasing capture efficiency due to using variations of external magnetic field and additional energy selection of circuital decelerating EMF of the captured electrons are numerically studied. It allows an increase in capture coefficient from 4 to 7,4 % and capture at the acceleration up to 7,4·1010 electrons.
Idioma:anglès
Publicat: 2007
Col·lecció:Mathematics and mechanics. Physics
Matèries:
Accés en línia:http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2007/v310eng/i1/14.pdf
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=180640
Descripció
Descripció física:1 файл (1.5 Мб)
Sumari:Заглавие с титульного листа
Электронная версия печатной публикации
The simulation problem of self-consistent dynamics of electron beam in small-size betatrons has been considered. The description of numerical model developed on the basis of macroparticle method is presented. The results of process modelling of electron injection and capture on the acceleration mode in betatrons with axially-symmetrical and asymmetrical magnetic field are shown. Optimal input injection parameters by beam current and energy (20...40 keV and 0,1...1,0 А) providing the maximum number of the capture electrons are defined. The techniques of increasing capture efficiency due to using variations of external magnetic field and additional energy selection of circuital decelerating EMF of the captured electrons are numerically studied. It allows an increase in capture coefficient from 4 to 7,4 % and capture at the acceleration up to 7,4·1010 electrons.