Vector fields of zero total curvature of the second type in fore-dimension space

Detalles Bibliográficos
Parent link:Bulletin of the Tomsk Polytechnic University/ Tomsk Polytechnic University (TPU).— , 2006-2007
Vol. 310, № 1.— 2007.— [P. 37-42]
Autor Principal: Onishchyk N. М.
Outros autores: Narezhneva D. L.
Summary:Заглавие с титульного листа
Электронная версия печатной публикации
Geometry of flat vector fields for which total curvature of the second kind equals zero in a domain of four-dimensional Euclidean space has been studied. These vector fields are classified depending on rank of the fundamental linear operator. Geometrical properties of Non-holonomic Pfaffian variety orthogonal to the vector field are investigated for each class. An example of a vector field with constant nonholonomicity vector different from zero is constructed. The research is carried out by the Cartan's method of exterior forms within moving frames.
Idioma:inglés
Publicado: 2007
Series:Mathematics and mechanics. Physics
Subjects:
Acceso en liña:http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2007/v310eng/i1/08.pdf
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=180601

MARC

LEADER 00000nla2a2200000 4500
001 180601
005 20231031170830.0
035 |a (RuTPU)RU\TPU\book\195778 
035 |a RU\TPU\book\195649 
090 |a 180601 
100 |a 20100521d2007 k y0rusy50 ca 
101 1 |a eng  |c rus 
102 |a RU 
135 |a drnn ---uucaa 
200 1 |a Vector fields of zero total curvature of the second type in fore-dimension space  |b Electronic resource  |f N. М. Onishchyk, D. L. Narezhneva 
203 |a Text  |c electronic 
215 |a 1 файл (362 Кб) 
225 1 |a Mathematics and mechanics. Physics 
230 |a Электронные текстовые данные (1 файл : 362 Кб) 
300 |a Заглавие с титульного листа 
300 |a Электронная версия печатной публикации 
320 |a [Bibliography: p. 42 (4 titles)] 
330 |a Geometry of flat vector fields for which total curvature of the second kind equals zero in a domain of four-dimensional Euclidean space has been studied. These vector fields are classified depending on rank of the fundamental linear operator. Geometrical properties of Non-holonomic Pfaffian variety orthogonal to the vector field are investigated for each class. An example of a vector field with constant nonholonomicity vector different from zero is constructed. The research is carried out by the Cartan's method of exterior forms within moving frames. 
337 |a Adobe Reader 
461 1 |0 (RuTPU)RU\TPU\book\169973  |t Bulletin of the Tomsk Polytechnic University  |f Tomsk Polytechnic University (TPU)  |d 2006-2007 
463 1 |0 (RuTPU)RU\TPU\book\195457  |t Vol. 310, № 1  |v [P. 37-42]  |d 2007  |p 201 p. 
610 1 |a vector fields 
610 1 |a zero total curvature 
610 1 |a fore-dimension space 
610 1 |a geometry 
610 1 |a Euclidean space 
610 1 |a linear operators 
610 1 |a geometrical properties 
610 1 |a Pfaffian variety 
610 1 |a non-holonomic variety 
610 1 |a classes 
610 1 |a nonholonomicity 
610 1 |a researches 
610 1 |a Cartan's method of exterior forms 
610 1 |a moving frames 
610 1 |a электронный ресурс 
675 |a 514.752  |v 3 
700 1 |a Onishchyk  |b N. М. 
701 1 |a Narezhneva  |b D. L. 
801 1 |a RU  |b 63413507  |c 20090623  |g PSBO 
801 2 |a RU  |b 63413507  |c 20110331  |g PSBO 
856 4 |u http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2007/v310eng/i1/08.pdf 
942 |c CF