Vector fields of zero total curvature of the second type in fore-dimension space
| Parent link: | Bulletin of the Tomsk Polytechnic University/ Tomsk Polytechnic University (TPU).— , 2006-2007 Vol. 310, № 1.— 2007.— [P. 37-42] |
|---|---|
| Autor Principal: | |
| Outros autores: | |
| Summary: | Заглавие с титульного листа Электронная версия печатной публикации Geometry of flat vector fields for which total curvature of the second kind equals zero in a domain of four-dimensional Euclidean space has been studied. These vector fields are classified depending on rank of the fundamental linear operator. Geometrical properties of Non-holonomic Pfaffian variety orthogonal to the vector field are investigated for each class. An example of a vector field with constant nonholonomicity vector different from zero is constructed. The research is carried out by the Cartan's method of exterior forms within moving frames. |
| Idioma: | inglés |
| Publicado: |
2007
|
| Series: | Mathematics and mechanics. Physics |
| Subjects: | |
| Acceso en liña: | http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2007/v310eng/i1/08.pdf |
| Formato: | Electrónico Capítulo de libro |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=180601 |
MARC
| LEADER | 00000nla2a2200000 4500 | ||
|---|---|---|---|
| 001 | 180601 | ||
| 005 | 20231031170830.0 | ||
| 035 | |a (RuTPU)RU\TPU\book\195778 | ||
| 035 | |a RU\TPU\book\195649 | ||
| 090 | |a 180601 | ||
| 100 | |a 20100521d2007 k y0rusy50 ca | ||
| 101 | 1 | |a eng |c rus | |
| 102 | |a RU | ||
| 135 | |a drnn ---uucaa | ||
| 200 | 1 | |a Vector fields of zero total curvature of the second type in fore-dimension space |b Electronic resource |f N. М. Onishchyk, D. L. Narezhneva | |
| 203 | |a Text |c electronic | ||
| 215 | |a 1 файл (362 Кб) | ||
| 225 | 1 | |a Mathematics and mechanics. Physics | |
| 230 | |a Электронные текстовые данные (1 файл : 362 Кб) | ||
| 300 | |a Заглавие с титульного листа | ||
| 300 | |a Электронная версия печатной публикации | ||
| 320 | |a [Bibliography: p. 42 (4 titles)] | ||
| 330 | |a Geometry of flat vector fields for which total curvature of the second kind equals zero in a domain of four-dimensional Euclidean space has been studied. These vector fields are classified depending on rank of the fundamental linear operator. Geometrical properties of Non-holonomic Pfaffian variety orthogonal to the vector field are investigated for each class. An example of a vector field with constant nonholonomicity vector different from zero is constructed. The research is carried out by the Cartan's method of exterior forms within moving frames. | ||
| 337 | |a Adobe Reader | ||
| 461 | 1 | |0 (RuTPU)RU\TPU\book\169973 |t Bulletin of the Tomsk Polytechnic University |f Tomsk Polytechnic University (TPU) |d 2006-2007 | |
| 463 | 1 | |0 (RuTPU)RU\TPU\book\195457 |t Vol. 310, № 1 |v [P. 37-42] |d 2007 |p 201 p. | |
| 610 | 1 | |a vector fields | |
| 610 | 1 | |a zero total curvature | |
| 610 | 1 | |a fore-dimension space | |
| 610 | 1 | |a geometry | |
| 610 | 1 | |a Euclidean space | |
| 610 | 1 | |a linear operators | |
| 610 | 1 | |a geometrical properties | |
| 610 | 1 | |a Pfaffian variety | |
| 610 | 1 | |a non-holonomic variety | |
| 610 | 1 | |a classes | |
| 610 | 1 | |a nonholonomicity | |
| 610 | 1 | |a researches | |
| 610 | 1 | |a Cartan's method of exterior forms | |
| 610 | 1 | |a moving frames | |
| 610 | 1 | |a электронный ресурс | |
| 675 | |a 514.752 |v 3 | ||
| 700 | 1 | |a Onishchyk |b N. М. | |
| 701 | 1 | |a Narezhneva |b D. L. | |
| 801 | 1 | |a RU |b 63413507 |c 20090623 |g PSBO | |
| 801 | 2 | |a RU |b 63413507 |c 20110331 |g PSBO | |
| 856 | 4 | |u http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2007/v310eng/i1/08.pdf | |
| 942 | |c CF | ||