Методы граничных интегральных уравнений и граничных элементов в решении задач трехмерной динамической теории упругости с сопряженными полями
| Main Author: | |
|---|---|
| Corporate Author: | |
| Other Authors: | |
| Summary: | Монография представляет собой последовательное изложение нового численно-аналитического метода решения динамических задач механики деформируемого твердого тела. Представлен прямой вариант метода граничных интегральных уравнений с гранично-элементной техникой численного моделирования. Для преодоления проблемы неэффективности применения методов граничных интегральных уравнений и граничных элементов к трехмерным динамическим задачам анизотропной теории упругости и ее расширений дано описание неклассической схемы редукции краевых задач к новым граничным интегральным уравнениям. Построенные граничные интегральные уравнения являются точными, в отличие от всех других известных схем, для которых итоговые граничные интегральные уравнения являются приближенными. Схема распространена на краевые задачи динамической механики деформируемого твердого тела с сопряженными полями. Эффективность неклассического подхода продемонстрирована на решении ряда трехмерных динамических задач для изотропных тел. Для научных работников, аспирантов и студентов, специализирующихся в области теории и численных методов решения трехмерных динамических задач механики деформируемого твердого тела. |
| Language: | Russian |
| Published: |
Москва, Физматлит, 2008
|
| Subjects: | |
| Format: | Book |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=150873 |
| Physical Description: | 352 с. ил. |
|---|---|
| Summary: | Монография представляет собой последовательное изложение нового численно-аналитического метода решения динамических задач механики деформируемого твердого тела. Представлен прямой вариант метода граничных интегральных уравнений с гранично-элементной техникой численного моделирования. Для преодоления проблемы неэффективности применения методов граничных интегральных уравнений и граничных элементов к трехмерным динамическим задачам анизотропной теории упругости и ее расширений дано описание неклассической схемы редукции краевых задач к новым граничным интегральным уравнениям. Построенные граничные интегральные уравнения являются точными, в отличие от всех других известных схем, для которых итоговые граничные интегральные уравнения являются приближенными. Схема распространена на краевые задачи динамической механики деформируемого твердого тела с сопряженными полями. Эффективность неклассического подхода продемонстрирована на решении ряда трехмерных динамических задач для изотропных тел. Для научных работников, аспирантов и студентов, специализирующихся в области теории и численных методов решения трехмерных динамических задач механики деформируемого твердого тела. |
| ISBN: | 9785922109536 |